An Introduction to Multivariate Modeling Techniques - Zoo文档.ppt

An Introduction to Multivariate Modeling Techniques - Zoo文档.ppt

  1. 1、本文档共279页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
An Introduction to Multivariate Modeling Techniques - Zoo文档

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Na?ve Bayes Classifiers Class boundaries for na?ve Bayes models can show circular or elliptical islands Since the predictors are treated as uncorrelated, there cannot be any diagonal ellipses * Example: Prediction of Spam These data were collect by HP. 4,601 e-mails were classified as spam or not spam. Predictor variables are derived form the emails related to the frequency of words or characters in the e-mail. Variables include: A set of word frequency variables. For example, the variable make measures the relative frequency of that word in the email Variables related to numbers: words that start with numbers are also measured. For example, the variable num415 measures how often the number 415 appears Other variables relate to special characters (e.g. the variable charExclamation) or capital letters (capitalAve) * Example: Prediction of Spam We would like to classify emails as being spam with an emphasis on high specificity, i.e. a low probability of non-spam being labeled as spam For training, an 80% split was used via stratified random sampling * Method Comparison * Method Comparison * ROC Comparison * Classification Datasets * Glaucoma Data 62 variables are derived from a confocal laser scanning image of the optic nerve head, describing its morphology. Observations are from normal and glaucomatous eyes, respectively. Examples of variables are: as: superior area vbss: volume below surface temporal mhcn: mean height contour nasal vari: volume above reference inferior, etc We would like to predict whether a subject has glaucoma given their imaging data * Predicting Diabetes in Pima Ind

文档评论(0)

bodkd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档