【聚焦双11】美国电商是如何用大数据玩转“双11”的?.doc

【聚焦双11】美国电商是如何用大数据玩转“双11”的?.doc

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
【聚焦双11】美国电商是如何用大数据玩转“双11”的? 论文类别:计算机?-?互联网研究 上传时间:2015/11/13?7:16:00 论文作者:未知 ?   (中讯)又到了一年一度的节日——全民购物季,在中国是“双十一”,在大洋彼岸的美国是“黑色星期五”,剁手党们在积极备战的同时,商家们也没闲着,卯足劲提高产品销售。然而在破纪录的交易量背后,实现消费者愉快买单并非易事,所以近年来大数据分析及相关技术日益受到全球电商的极大重视。   在中国,通过大数据人物画像来实现流量个性化已非新鲜事,同时在大洋彼岸的美国,据记者了解,目前已经更进一步,通过最先进的数据分析平台,电商可以通过社交平台等数据对用户个性特征进行分析,从而实现更精准的营销,而且并非“财大气粗”的中小企业也可以享受到这样的福利。   不是所有的行为数据都有价值   对于电商而言,其对大数据分析的主要需求可以体现在两方面,一是快速反应出问题所在,二是发现新的用户群体。   对于备受关注的后者,电商希望通过智能联网分析已有的数据,发掘并预测出用户的兴趣所在,刺激用户购买积极性,并将产品推向特定人群。目前业界的普通实现方式是,通过用户网络上留下的历史信息、记录,来猜测喜好,例如相关图书推荐、机票航班推荐等,但失算之处可能在于精准度和推荐时机不尽人意,比如用户已经旅行归来,系统还在推荐往返机票。   目前美国有一种研究方向,通过非结构化数据分析技术对用户进行个性化维度分析,包括对用户在网络上更新的个人状态信息进行分析,如Twitter、Facebook,推定用户个性及特征,以精准定义个人并实现标签化,同时反馈给商家并与目标市场用户相匹配,从而实现产品的关联。   对此,美国数据分析科学家、Taste?Analytics创始人及全美五大可视化研究中心的Derek?Wang(汪晓宇)博士表示,传统的方式需要基于大量的行为数据进行分析,并相信所有的动作具有价值,但事实却并非这样,容易造成对精准度和时机的把握不尽人意;而通过对人在网络上留下的真实语言、说话方式、评价内容等进行个性化维度分析,更贴近人真实的本性,这当然也包??购买喜好,只有这样才能实现更加准确的产品购买需求挖掘。   电商商户的“福利”   目前,该分析技术在电商平台上更能直接释放效力的方式,便是针对中小型商户的解决方案:对用户产品评价进行分析,来优化产品、提升用户体验。   Derek?Wang举例道,通过Taste?Analytics?Signals数据分析平台,亚马逊平台上的耳机商户,可以对平台上用户的产品评价及Facebook上的留言进行语义分析,得出对耳机品牌、电池寿命、品种型号的用户反馈,以及不同产品间如Bose与Sony的产品分析。   这对于美国为数众多的亚马逊、新蛋、易贝商户而言无疑十分受用,其可以及时对产品和销售过程进行优化。   另一个典型应用是电商平台本身。美国某著名的大型家居销售企业,在其电商网络平台上,通过刺激网络流量来买卖产品。利用数据分析平台,其不仅发现并解决了用户消费时信用卡连刷2次的问题,同时观察到网络流量在一周中的不平均分布,后续通过市场促销,改变了市场营销过程。   决策在数据之上而非数据本身   用户的特征来自于文本分析,用户在网络上说的每一句话都将可能成为分析点。无疑更多的数据将有力于对用户行为进行匹配,提高分析准确性,而这方面社交平台则提供了一个很好的非结构化数据的来源。   事实上,美国电商本身已经在开始着手整合社交网络的数据信息,例如闪购网站Myhabit建议用户通过亚马逊账号登陆;电商Macys需要用Facebook账号登陆(这样的整合在国内也并不鲜见)。对于用户,这样的登陆方式更方便快捷;对于商户,可以将个人信息关联起来;而对于大数据技术/服务提供商,数据分析服务便可以由此展开,进行深度数据挖掘。   在Derek?Wang看来,此项围绕人的非结构化数据分析平台服务,不仅能提升结果的准确性,更重要的是它建立的不是一个推荐系统,而是一个增强智慧的过程。毕竟仅基于既有行为的数据分析会导致可能的失败,小到上述提及的机票推荐,大到金融领域采用数学模型的危险性在次贷危机中已经暴露无疑。   “由机器提取的数据内涵,通过图像的方法展示给企业决策者,决策者通过与机器互动后做出决定。数据分析平台是辅助企业决策者的工具,也是它的价值所在。”Derek?Wang说道。   不谋而合,《纽约时报》资深撰稿人史蒂夫·洛尔曾著书大数据时评论,虽然决策活动对数据与分析的倚重与日俱增是大势所趋,但同时还要让常识发挥应有的作用,经验与直觉仍然在决策中占有一席之地,而好的直觉又往往建立在大量数据分析基础之上。   机器与人分工合作才更好,更加值得一提的是,直观的图像可视化的呈现方式,使得电商及商

文档评论(0)

10301556 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档