网站大量收购独家精品文档,联系QQ:2885784924

Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms精品.pdf

Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms精品.pdf

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms精品

Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms Edgar Solomonik and James Demmel Department of Computer Science University of California at Berkeley, Berkeley, CA, USA solomon@, demmel@ Abstract. Extra memory allows parallel matrix multiplication to be done with asymptotically less communication than Cannon’s algorithm and be faster in practice. “3D” algorithms arrange the p processors in a 3D array, and store redundant copies of the matrices on each of p 1/3 layers. ‘2D” algorithms such as Cannon’s algorithm store a single copy of the matrices on a 2D array of processors. We generalize these 2D and 3D algorithms by introducing a new class of “2.5D algorithms”. For matrix multiplication, we can take advantage of any amount of extra memory to store c copies of the data, for any c ∈ {1, 2, ..., p 1/3}, to reduce the bandwidth cost of Cannon’s algorithm by a factor of c1/2 and the latency cost by a factor c3/2 . We also show that these costs reach the lower bounds, modulo polylog(p ) factors. We introduce a novel algorithm for 2.5D LU decomposition. To the best of our knowledge, this LU algo- rithm is the first to minimize communication along the critical path of execution in the 3D case. Our 2.5D LU algorithm uses communication- avoiding pivoting, a stable alternative to partial-pivoting. We prove a novel lower bound on the latency cost of 2.5D and 3D LU factorization, showing that while c copies of the data can also reduce the bandwidth by a factor of c1/2 , the latency must increase by a factor of c1/2 , so

文档评论(0)

bodkd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档