Text Mining 网络文本挖掘[精品].ppt

  1. 1、本文档共54页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Text Mining 网络文本挖掘[精品]

Vector space is the play-yard * Classification Support Vector Machine * Latent Semantic Indexing Beyond Keyword matching Suppose I use the query “超女 冠军” to search, and there’s an article A about 李宇春 which contains no exact keyword of neither “超女”,nor “冠军”, how can we make it show up? * Latent Semantic Indexing 李宇春 广告 超女 冠军 代言 饮料 Doc1 1 1 1 1 0 0 Doc2 1 0 1 1 1 0 Doc3 1 1 0 0 1 1 Intuitively, we found 李宇春 is highly related to 超女,冠军 in most of documents Conceptually, we say李宇春 is closely related to, or even can be interpreted by超女,冠军. Mathematically, we say 李宇春 can be 超女,冠军 represented as a linear combination of超女,冠军 etc. * Latent Semantic Indexing Singular Vector Decomposition * Latent Semantic Indexing 李宇春 广告 超女 冠军 代言 Doc1 0.8 0.7 0.9 0.85 0 Doc2 1 0.2 1 1 1 Doc3 1 1 0.8 0.8 1 Now projected into a lower dimensional space * Clustering K-means * Hierarchical Clustering * Text Mining ABC 2 Statistical Approach Na?ve Bayes * Text Mining ABC 2 Statistical Approach Na?ve Bayes If we know how likely a document will look like given it’s class, can we know inversely the chance of the document to be any specific class, given the document itself. * Text Mining ABC 2 Statistical Approach * Text Mining ABC 2 Statistical Approach Hidden Markov Model * Hidden Markov Model If we observe the sequence x1x2x3, can we make a good guess on the sequence of status? This makes sense when we need to tag the words within a text to proper entities. Text Mining ABC 2 Statistical Approach * Text Mining ABC 2 Statistical Approach * What other players do with Text Mining? International IBM Microsoft Google These guys research on almost every thing!!! * Autonomy Leading solution provider on Unstructured Information Management Product IDOL? Server Retrieval Hyperlinking Summarization Taxonomy Generation Categorization Clustering Agents Profiling Collaboration Alerting * Buzzmetrics Key player in WOM monitoring Relevance Detection Classification Phrase Mining

文档评论(0)

bodkd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档