基于MATLAB的语音信号时域特征分析(.doc

基于MATLAB的语音信号时域特征分析(.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于MATLAB的语音信号时域特征分析(

基于MATLAB的语音信号时域特征分析短时自相关函数 自相关函数用于衡量信号自身时间波形的相似性。清音和浊音的发声机理不同,因而在波形上也存在着较大的差异。浊音的时间波形呈现出一定的周期性,波形之间相似性较好;清音的时间波形呈现出随机噪声的特性,样点间的相似性较差。因此,我们用短时自相关函数来测定语音的相似特性。短时自相关函数定义为: 令,并且,可以得到: 图给出了清音的短时自相关函数波形,图7给出了不同矩形窗长条件下(窗长分别为N=70,N=140,N=210,N=280)浊音的短时自相关函数波形。由图1.、图1.短时自相关函数波形分析可知:清音接近于随机噪声,清音的短时自相关函数不具有周期性,也没有明显突起的峰值,且随着延时k的增大迅速减小;浊音是周期信号,浊音的短时自相关函数呈现明显的周期性,自相关函数的周期就是浊音信号的周期,根据这个性质可以判断一个语音信号是清音还是浊音,还可以判断浊音的基音周期。浊音语音的周期可用自相关函数中第一个峰值的位置来估算。所以在语音信号处理中,自相关函数常用来作以下两种语音信号特征的估计: 1)区分语音是清音还是浊音;2)估计浊音语音信号的基音周期。 图1 清音的短时自相关函数 图1. 不同矩形窗长条件下的浊音的短时自相关函数 短时平均过零率 过零率可以反映信号的频谱特性。当离散时间信号相邻两个样点的正负号相异时,我们称之为“过零”,即此时信号的时间波形穿过了零电平的横轴。统计单位时间内样点值改变符号的次数具可以得到平均过零率。定义短时平均过零率: 其中为符号函数,,在矩形窗条件下,可以简化为 短时过零率可以粗略估计语音的频谱特性。由语音的产生模型可知,发浊音时,声带振动,尽管声道有多个共振峰,但由于声门波引起了频谱的高频衰落,因此浊音能量集中于3KZ以下。而清音由于声带不振动,声道的某些部位阻塞气流产生类白噪声,多数能量集中在较高频率上。高频率对应着高过零率,低频率对应着低过零率,那么过零率与语音的清浊音就存在着对应关系。. 图为某一语音在矩形窗条件下求得的短时能量和短时平均过零率。分析可知:清音的短时能量较低,过零率高,浊音的短时能量较高,过零率低。清音的过零率为0.5左右,浊音的过零率为0.1左右,两但者分布之间有相互交叠的区域,所以单纯依赖于平均过零率来准确判断清浊音是不可能的,在实际应用中往往是采用语音的多个特征参数进行综合判决。 短时平均过零率的应用:1)区别清音和浊音。例如,清音的过零率高,浊音的过零率低。此外,清音和浊音的两种过零分布都与高斯分布曲线比较吻合。2)从背景噪声中找出语音信号。语音处理领域中的一个基本问题是,如何将一串连续的语音信号进行适当的分割,以确定每个单词语音的信号,亦即找出每个单词的开始和终止位置。3)在孤立词的语音识别中,可利用能量和过零作为有话无话的鉴别。 图矩形窗条件下的短时平均过零率 时域分析方法的应用 1)基音频率的估计 首先可利用时域分析(短时能量、短时过零率、短时自相关)方法的某一个特征或某几个特征的结合,判定某一语音有效的清音和浊音段;其次,针对浊音段,可直接利用短时自相关函数估计基音频率,其方法是:估算浊音段第一最大峰的位置,再利用抽样率计算基音频率,举例来说,若某一语音浊音段的第一最大峰值约为35个抽样点,设抽样频率为11.025KHZ,则基音频率为11025/35=315 HZ。 但是,实际上第一最大峰值位置有时并不一定与基音周期吻合。一方面与窗长有关,另一方面还与声道特性有关。鉴于此,可采用三电平削波法先进行预处理。 2)语音端点的检测与估计 可利用时域分析(短时能量、短时过零率、短时自相关)方法的某一个特征或某几个特征的结合,判定某一语音信号的端点,尤其在有噪声干扰时,如何准确检测语音信号的端点,这在语音处理中是富有挑战性的一个课题。 短时平均过零率 a=wavread(beifeng.wav); n=length(a); N=320; subplot(3,1,1),plot(a); h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数En subplot(3,1,2),plot(En); for i=1:n-1 if a(i)=0 b(i)= 1;

文档评论(0)

xcs88858 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档