数学建模_DNA序列分类模型论文终稿(精品论文).docVIP

数学建模_DNA序列分类模型论文终稿(精品论文).doc

  1. 1、本文档共35页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数学建模_DNA序列分类模型论文终稿(精品论文)

DNA序列分类模型 DNA序列分类模型 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作 者 签 名:       日  期:        指导教师签名:        日  期:        使用授权说明 本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:        日  期:        学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名: 日期: 年 月 日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权      大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名: 日期: 年 月 日 导师签名: 日期: 年 月 日 注 意 事 项 1.设计(论文)的内容包括: 1)封面(按教务处制定的标准封面格式制作) 2)原创性声明 3)中文摘要(300字左右)、关键词 4)外文摘要、关键词 5)目次页(附件不统一编入) 6)论文主体部分:引言(或绪论)、正文、结论 7)参考文献 8)致谢 9)附录(对论文支持必要时) 2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。 3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。 4.文字、图表要求: 1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写 2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画 3)毕业论文须用A4单面打印,论文50页以上的双面打印 4)图表应绘制于无格子的页面上 5)软件工程类课题应有程序清单,并提供电子文档 5.装订顺序 1)设计(论文) 2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订 3)其它 摘要 本文分析了已知类别的人工DNA序列的特征,建立了聚类分析延拓模型和马尔可夫模型,分别对未知类别的人工DNA序列和自然序列进行分类,根据分类效果选出了较优模型。 首先对数据进行预处理,得到人工DNA序列的单个碱基丰度和不同碱基丰度之比等特征量,进而分析A、B两类的差异,得到合适的特征判定条件对未知类别的DNA序列进行分类。计算人工DNA序列的特征量,给出各序列的统计数据。 其次用聚类分析延拓模型进行分类。用A、B两类具有明显差异的特征作为样品特征变量,得到欧式空间中表征编号1-20人工DNA序列的特征向量,计算两两之间的Lance和Williams距离进行相似性度量,逐步选择相似性较大的归为一类,同时不断更新类内的标准比较特征向量,对聚类方法进行延拓,最终得到类内差异小、类间差异大的A、B两类,建立了聚类分析延拓模型。再对选取的特征变量进行改进,提高模型的分类效果。最后,借助均值、方差和相关系数等参数对改进模型的分类效果进行分析。 再次用马尔可夫模型进行分类。将DNA序列看成是马尔可夫链,求出编号1-10和11-20人工DNA序列在已知当前碱基种类的条件下,下一个碱基出现任一种的概率,结果存入概率转移矩阵1和2,再利用矩阵1和2分别求出编号1-20中任一条DNA序列出现的概率,选择较大的一个作为该DNA序列的分类,建立马尔可夫模型。再进

文档评论(0)

pengyou2017 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档