机器学习为什么机器学习难于应用.docxVIP

机器学习为什么机器学习难于应用.docx

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
机器学习为什么机器学习难于应用.docx

机器学习为什么机器学习难于应用摘要: 本文主要讲述了如何管理机器学习应用方面的棘手问题应用机器学习是有挑战性的。在机器学习领域,你必须要在没有正确答案的问题上做出很多决定!例如:· 用什么框架?· 用什么数据作为输入,要输出什么数据?· 用什么算法?· 用什么算法配置?这些问题对于初学者来说是一个严峻的挑战。读完本文之后,你将了解:· 如何形成一个明确的学习问题。· 当给你的问题设计一个学习系统的时候,有四个决策点需要考虑。· 你可以用三个决策来明确地来应对在实践中设计学习系统的难题。概述本文分成了如下六个部分:1、适定的学习问题2、选择训练数据3、选择目标函数4、选择目标函数的表达形式5、选择学习算法6、如何设计学习系统适定的学习问题我们可以将应用机器学习领域中的一般学习任务定义为一个程序,它可以根据特定的性能测量从一些任务中学习经验。Tom Mitchell在他1997年《Machine Learning》一书中做了清晰的阐述:一个计算机程序是从某一类任务T和性能测量结果P中学习经验E的,如果它在T中的任务表现为P,则用经验E来改进。我们以这个作为对那些我们可能感兴趣的学习任务类型的一般定义,例如预测建模等应用机器学习。Tom列举了几个例子来说明这一点,如下所示:· 学习识别口语· 学习无人驾驶· 学习天体结构分类· 学习世界级的双陆棋我们用上面的定义来定义自己的预测建模问题。一旦定义了,任务就会变成设计一个学习系统来应对。设计一个学习系统,如:一个机器学习应用,涉及了四个设计选择:1、选择训练数据2、选择目标函数3、选择表达形式4、选择学习算法对于一个给定的问题并提供了无限的资源,可能有最好的一组选择,但是我们没有无限的时间来计算资源,以及领域内的或者是学习系统的知识。因此,尽管我们能准备一个适定的学习问题的描述,设计这个最有可能的学习系统还是很困难的。我们最好就是用知识,技巧,和可用的资源通过设计的选择来进行我们的工作。让我们更详细地看一下每一个设计选择选择训练数据你必须选择学习系统将要用到的数据作为学习经验。这是过去观测到的数据现有的训练经验类型对研究人员的成败有着重大影响。对于学习问题,你必须经常收集需要的数据。这个意思是:· 清除文件· 查询数据· 执行文件· 整理不同资源· 合并实体你需要一次性获取到所有的数据,并且变成一个标准化的形式,这样一个观测就代表了一个结果是可用的实体。选择目标函数下一步,你必须选择一个学习问题的框架机器学习实际上是一个学习从输入(X)到输出(y)的映射函数(f)的问题Y=f(x)这个函数能被用在将来预测最可能输出结果的新数据上。学习系统的目标是准备一个函数,提供了可用资源,将输入映射到输出。这是一个称为函数近似的问题。这个结果将是一个近似值,意味着有误差。我们将尽力减小这个误差,但是一些误差将一直在数据中存在并进行干扰。这一步是关于精确地选择输入什么数据到这个函数,例如:输入特征或者输入变量还有预测什么,例如:输出变量。我经常将此称为学习问题的框架,选择输入和输出本质上即是选择目标函数的类型,就是我们将寻求相近的函数。选择目标函数的表达形式下一步,你必须选择你希望用来映射函数的表达形式考虑这个作为你希望能用来做预测的最终模型的类型。你必须选择这个模型的形式,选择是否你喜欢的数据结构。现在我们已经详述了这个理想的目标函数V,必须选择一个表达形式,学习程序将用来描述将要学习的函数V。例如:· 也许你的项目需要一个易于理解并向利益相关方解释的决策树。· 也许你的利益相关方倾向于一个线性模型,统计人员能很容易地解释。· 也许你的利益相关方不关心除了模型表现以外的任何事,因此所有的模型表达形式都是可以争取的。表示的选择将限制学习算法的类型,您可以使用这些算法来学习映射函数。选择一个学习算法最后,你必须选择学习算法,该学习算法执行输入输出数据并且学习你倾向的表达式的。如果在表达形式的选择上面没有什么限制,那么经常是这样,然后你可能评价一系列不同的算法和表达式。如果在表达形式的选择上面有一些严格的限制,例如:一个加权和线性模型或者一个决策树,那么算法的选择将被限于能操作特定表达形式的那些。算法的选择可以利用自身的限制,例如像数据标准化那样的特定数据的准备转换。如何设计学习系统开发一个学习系统是有挑战性的。从这个方式上没人能告诉你每个决定的最佳答案;对于你指定的学习问题,最好的答案是未知的。Mitchell描述了在设计一个下棋学习系统所做的选择的时候,帮助澄清了这一点。在设计一个下棋学习系统时的选择描述。来自“Machine Learning”, 1997。Mitchell说:在许多方法上,这些设计选择已经约束了学习任务。我们已经限定了能被用来获取到一个线性评估函数的知识类型。除此之外,我们还限定了

文档评论(0)

czy2014 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档