- 1、本文档共117页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
实验课:因子分析和主成分分析.doc
实验课:因子分析和主成分分析
实验课:因子分析
实验目的
理解主成分(因子)分析的基本原理,熟悉并掌握SPSS中的主成分(因子)分析方法及其主要应用。
因子分析
基础理论知识
1 概念
因子分析(Factor analysis):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。
主成分分析(Principal component analysis):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。
两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。
2 特点
(1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。
(2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。
(3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。
(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。
在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。
3 类型
根据研究对象的不同,把因子分析分为R型和Q型两种。
当研究对象是变量时,属于R型因子分析;
当研究对象是样品时,属于Q型因子分析。
但有的因子分析方法兼有R型和Q型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。
4分析原理
假定:有n个地理样本,每个样本共有p个变量,构成一个n×p阶的地理数据矩阵 :
当p较大时,在p维空间中考察问题比较麻烦。这就需要进行降维处理,即用较少几个综合指标代替原来指标,而且使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又是彼此独立的。
线性组合:记x1,x2,…,xP为原变量指标,z1,z2,…,zm(m≤p)为新变量指标(主成分),则其线性组合为:
Lij是原变量在各主成分上的载荷
无论是哪一种因子分析方法,其相应的因子解都不是唯一的,主因子解仅仅是无数因子解中之一。
zi与zj相互无关;
z1是x1,x2,…,xp的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…的所有线性组合中方差最大者。则,新变量指标z1,z2,…分别称为原变量指标的第一,第二,…主成分。
Z为因子变量或公共因子,可以理解为在高维空间中互相垂直的m个坐标轴。
主成分分析实质就是确定原来变量xj(j=1,2 ,…,p)在各主成分zi(i=1,2,…,m)上的荷载 lij。
从数学上容易知道,从数学上也可以证明,它们分别是相关矩阵的m个较大的特征值所对应的特征向量。
5分析步骤
5.1 确定待分析的原有若干变量是否适合进行因子分析(第一步)
因子分析是从众多的原始变量中重构少数几个具有代表意义的因子变量的过程。其潜在的要求:原有变量之间要具有比较强的相关性。因此,因子分析需要先进行相关分析,计算原始变量之间的相关系数矩阵。如果相关系数矩阵在进行统计检验时,大部分相关系数均小于0.3且未通过检验,则这些原始变量就不太适合进行因子分析。
SHAPE \* MERGEFORMAT
进行原始变量的相关分析之前,需要对输入的原始数据进行标准化计算(一般采用标准差标准化方法,标准化后的数据均值为0,方差为1)。
SPSS在因子分析中还提供了几种判定是否适合因子分析的检验方法。主要有以下3种:
巴特利特球形检验(Bartlett Test of Sphericity)
反映象相关矩阵检验(Anti-image correlation matrix)
KMO(Kaiser-Meyer-Olkin)检验
(1)巴特利特球形检验
该检验以变量的相关系数矩阵作为出发点,它的零假设H0为相关系数矩阵是一个单位阵,即相关系数矩阵对角线上的所有元素都为1,而所有非对角线上的元素都为0,也即原始变量两两之间不相关。
巴特利特球形检验的统计量是根据相关系数矩阵的行列式得到。如果该值较大,且其对应的相伴概率值小于用户指定的显著性水平,那么就应拒绝零假设H0,认为相关系数不可能是单位阵,也即原始变量间存在相关性。
(2)反映象相关矩阵检验
该检验以变量的偏相关系数矩阵作为出
您可能关注的文档
- XP系统服务介绍(文字).doc
- [信息系统项目管理师教程]10(穆利堂推荐)河南郑州房地产政府工程项目管理系统软件信息化整体解决.doc
- 陕北山地枣树微灌土壤水分入渗特性与耗水规律试验研究.doc
- 长春市物资局办公楼结构、施工设计计算书.doc
- 《房地产日常管理与销售经典售楼部案场管理与制度》(113页)-营销制度表格.doc
- 远程教育i测试资料汇总.doc
- 经济型高层旅馆设计计算书(某七层框架结构宾馆设计建筑图结构图计算书9000平米左右)-计算书【可提供完整设计图纸】.doc
- 固安施工组织设计1-47.doc
- 微观经济学部分补充课件.doc
- 13认识空气、风解析.doc
- 七章货物的保险.pptx
- 三章国际间接投资.pptx
- 人性假设理论.pptx
- 外研高一英语必修三ModuleIntroduction汇总市公开课获奖课件省名师示范课获奖课件.pptx
- 月相成因优质获奖课件.pptx
- 小学二年级语文课件《狐假虎威》省名师优质课赛课获奖课件市赛课一等奖课件.pptx
- 养羊业概况专题知识讲座.pptx
- 微生物的实验室培养市公开课获奖课件省名师示范课获奖课件.pptx
- 人教版六年级下册式与方程整理与复习市公开课获奖课件省名师示范课获奖课件.pptx
- 必威体育精装版高中精品语文教学:第二单元-第7课-诗三首:涉江采芙蓉、-短歌行、归园田居市公开课获奖课件省名师.pptx
最近下载
- 2.3二次函数与一元二次方程、不等式(第1课时)课件(共19张PPT)2021-2022学年高一上学期人教A版(2019)数学必修第一册.pptx
- 5G赛前复习练习卷含答案.doc VIP
- 5G赛前复习复习测试题.doc VIP
- 职业技术学院数控技术专业《数控编程与操作》课程标准.docx
- 八年级数学上册专题12.1 全等三角形九大基本模型 专项讲练(解析版).docx VIP
- 《中华人民共和国烟草专卖法》知识测试卷含答案.doc VIP
- S7-1500Web服务器功能手册.pdf VIP
- Scratch圭小校本教材.pdf
- 5G赛前复习练习卷含答案(一).doc VIP
- 铝的阳极氧化和着色(华南师范大学物化实验).pdf
文档评论(0)