专业英语论文--Online Feature Selection for Mining Big Data.doc

专业英语论文--Online Feature Selection for Mining Big Data.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Online Feature Selection for Mining Big Data 挖掘大数据的在线特征选择 Steven C.H. Hoi?, Jialei Wang?, Peilin Zhao?, Rong Jin? ?School of Computer Engineering, Nanyang Technological University, Singapore ?Department of Computer Science and Engineering, Michigan State University, USA {chhoi, JL.Wang, zhao0106}@.sg, rongjin@ ABSTRACT 摘要 Most studies of online learning require accessing all the attributes/ features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or the access to it is expensive to acquire the full set of attributes/features. To address this limitation, we investigate the problem of Online Feature Selection (OFS) in which the online learner fixed number of features. The key challenge of Online Feature Selection is how to make accurate prediction using a small and fixed number of active features. This is in contrast to the classical setup of online learning where all the features are active and can be used for prediction. We address this challenge by studying sparsity regularization and truncation techniques. Specifically, we present an effective algorithm to solve the problem, give the theoretical analysis, and evaluate the empirical performance of the proposed algorithms for online feature selection on several public datasets. We also demonstrate the application of our online feature selection technique to tackle real-world problems of big data mining, which is significantly more scalable than some well-known batch feature selection algorithms. The encouraging results of our experiments validate the efficacy and efficiency of the proposed techniques for large-scale applications. 大多数在线学习的研究需要访问所有的属性/ 培训实例特点。这样一个经典的设置 并不总是适用于真实世界的应用 当数据实例的高维或访问 它是昂贵的,以获得全套的属性/功能。 为了解决这个限制,我们调查的问题 在线特征选择(OFS),在线学 只允许保持一个分类涉及一个小的和固定数目。在线功能的关键挑战 选择是如何使用一个准确的预测 小型和固定数量的活动特征。这是对比 以经典的在线学习的设置,所有的功能 都是主动的,可用于预测。我们解决这个问题 研究稀疏正则化和截断的挑战 技术。具体而言,我们提出了一种有效的算法 解决问题,给出理论分析和评价 建议算法的经验性能 几种公共数据

文档评论(0)

ze122230743 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档