蚁群算法在车辆路径优化中的应用 毕业设计论文精选.doc

蚁群算法在车辆路径优化中的应用 毕业设计论文精选.doc

  1. 1、本文档共38页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
蚁群算法在车辆路径优化中的应用 毕业设计论文精选

毕 业 设 计(论 文) 题目:蚁群算法在车辆路径优化中的应用 姓 名 学 号 0910312134 所在学院 湖北工业大学 专业班级 09计职1班 指导教师 日 期 2013 年 5 月 8 日 摘 要 许多实际工程问题可以抽象为相应的组合优化问题,TSP问题是作为所有组合优化问题的范例而存在的,它已成为并将继续成为测试组合优化新算法的标准问题。从理论上讲,使用穷举法可以求解出TSP问题的最优解;但是对现有的计算机来说,让它在如此庞大的有哪些信誉好的足球投注网站空间中寻求最优解,几乎是不可能的。所以,各种求TSP问题近似解的算法应运而生了,本文所描述的蚁群算法(AC)也在其中。 目前已出现了很多的启发式算法,而蚁群算法作为一种新型的启发式算法,已成功地应用于求解TSP问题。蚂蚁通过分泌信息素来加强较好路径上信息素的浓度,同时按照路径上的信息素浓度来选择下一步的路径:好的路径将会被越来越多的蚂蚁选择,因此更多的信息素将会覆盖较好的路径;最终所有的蚂蚁都集中到了好的路径上。蚂蚁的这种基于信息素的正反馈原理正是整个算法的关键所在。 本文介绍了基本蚁群算法概念、原理及蚁群算法的特点,再根据蚁群算法的缺点做出了优化。采用轮盘赌选择代替了基本框架中通过启发式函数和信息素选择路径,改进蚁群算法的信息素传递参数,让整个算法更快速的找到最优解。其次,采用最大最小优化系统限制最大值和最小值,让整个系统更快收敛,得到最优解。 关键字:蚁群算法,TSP问题,启发式函数,轮盘算法,最大最小优化 ABSTRACT Many practical engineering problems can be abstracted as corresponding combinatorial optimization problem, TSP problem is an example of all as a combinatorial optimization problem, it has become and will continue to be a new combinatorial optimization algorithm of standard test problems. In theory, using the exhaustion method can solve the TSP problem optimal solution; But for the existing computer, let it in such a large search space to seek the optimal solution, it is almost impossible. So, all kinds of algorithm arises at the historic moment, the approximate solution of the TSP problem described in this paper, ant colony algorithm (AC) is among them. Has appeared a lot of heuristic algorithm and ant colony algorithm as a kind of new heuristic algorithm, has been successfully used in solving TSP problems. Ant secretion by pheromones to strengthen the good path pheromone concentration, at the same time according to the path to choose the next path pheromone concentration: good paths will be more and more ants to choose, so that more information will cover good path; Eventually all the ants on a good path. This positive feedback based on the pheromone of ant principle is the key to the whole algorithm. This paper introduces the basic conc

文档评论(0)

beoes + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档