网站大量收购闲置独家精品文档,联系QQ:2885784924

Online regression competitive with reproducing kernel Hilbert spaces(学习资料)资料.pdf

Online regression competitive with reproducing kernel Hilbert spaces(学习资料)资料.pdf

  1. 1、本文档共37页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Online regression competitive with reproducing kernel Hilbert spaces(学习资料)资料

On-line regression competitive with reproducing kernel Hilbert spaces 6 0 0 Vladimir Vovk 2 vovk@cs.rhul.ac.uk n a J 4 February 1, 2008 2 ] Abstract G We consider the problem of on-line prediction of real-valued labels, L assumed bounded in absolute value by a known constant, of new objects . s from known labeled objects. The prediction algorithm’s performance is c measured by the squared deviation of the predictions from the actual [ labels. No stochastic assumptions are made about the way the labels 2 and objects are generated. Instead, we are given a benchmark class of v prediction rules some of which are hoped to produce good predictions. 8 We show that for a wide range of infinite-dimensional benchmark classes 5 one can construct a prediction algorithm whose cumulative loss over the 0 first N examples does not exceed the cumulative loss of any prediction 1 rule in the class plus O(√N ); the main differences from the known results 1 are that we do not impose any upper bound on the norm of the considered 5 prediction rules and that we achieve an optimal leading term in t

文档评论(0)

seunk + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档