GBP-H高压变频电控技术在孟庄煤矿副井斜巷提升中应用.docVIP

GBP-H高压变频电控技术在孟庄煤矿副井斜巷提升中应用.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
GBP-H高压变频电控技术在孟庄煤矿副井斜巷提升中应用

GBP-H高压变频电控技术在孟庄煤矿副井斜巷提升中的应用   概述    孟庄煤矿副井提升系统是矿井生产的重要环节,通过对其电控系统进行技术改造,使系统运行更加稳定、可靠、高效,取得了良好的安全效益和经济效益。    孟庄煤矿副井提升机型号为XKT1×2×1.5B-20单滚筒缠绕式提升机;拖动设备选用JRQ148-8 型电机,单机拖动。于2009年进行过技术改造,电控系统更换GBP-H高压变频控制,进一步提高了电控系统的控制性能和可靠性。    一、 原电控系统概况及存在的问题    孟庄煤矿副井提升机原电控系统为TKD型,存在的最主要问题是:    ①提升机在减速和爬行阶段的速度控制性能差,经常造成停车位置不准确;    ②提升机频繁的起动、调速和制动,在转子外电路所串金属电阻上产生相当大的功耗,消耗电能造成能源浪费,金属电阻发热严重导致工作环境温度升高,设备老化加快。   ③系统功率因数低,电阻分级切换,采用有级调速,启动电流及切换电流冲击大,设备运行不平稳,引起电气及机械冲击;容易掉道,故障率高;    ④控制线路复杂,工作稳定性和可靠性差,缺乏故障诊断功能,排查故障困难,接触器频繁投切,电弧烧伤触点,影响接触器的寿命,设备维修成本较高;    ⑤ 该系统的电气控制部分均采用板式结构、高压接触器室,空间体积大、运行噪声高,且所有接线端柱裸露在外,对运行安全造成极大的威胁。    ⑥整个控制过程完全依赖工作人员的主观控制,存在安全隐患。    二、 技术改造原则与方案    2.1 技术改造总原则    目前,国内矿用提升机调速系统有直流调速系统和交流调速系统两种。   以晶闸管整流设备为基础的直流调速系统的谐波污染严重,功率因数低,如采用直流调速系统,需将现有提升电机更换为直流电机,相应增加改造成本,而直流电机较交流电机故障率高,维护工作量大且费用高。因此,对电控调速系统进行改造升级不建议采用直流调速系统。   以高压变频器结合PLC为核心的交流调速技术已比较成熟且在部分单位取得了较好的运行效果,可实现正转、反转、牵引、电制动等功能,完全满足提升???需要的四象限运行的负载调速需要。    最后决定采用GBP-H高压变频器交流控制方案。    2.2 技术改造方案    技术改造方案具体内容为:将原有的转子串电阻的调速方式改为变频变压的调速方式,采用专用高压变频器实现。    首先,为保证供电可靠性更换两台电源柜,采用了森源的V-12型断路器、和南自的电机综合保护器,为新电控的安全运行又增加了安全保障。    然后,将原电控拆除换成了GBP-H高压变频设备,GBP-H高压变频调速柜由移相隔离变压器柜、功率单元柜和控制柜三部分组成。变频器采用先进的功率单元串联叠波技术、矢量控制技术、有源逆变能量回馈技术,可靠性高、性能优越、操作简便。可实现四象限运行、带能量反馈、动态响应快、低速运行转矩大的电动机驱动特性。    三、工作原理    3.1主电路    GBP系列高压变频器采用交-直-交直接高压(高-高)方式,主电路开关元件为IGBT。GBP系列变频器采用功率单元串联,叠波升压,充分利用当今变频器的成熟技术,因而具有很高的可靠性。    变压器原边输入为变频器相应电压等级电压,Y形接法;副边绕组数量依变频器电压等级及整机结构而定,采用延边三角形接法,为每个功率单元提供三相电源输入。    为了最大限度地抑制输入侧谐波含量,同一相的副边绕组通过延边三角形接法移相,绕组间的相位差由下式计算:    60ordm;    移相角度= ――――――    每相单元数    由于为功率单元提供电源的变压器副边绕组间有一定的相位差,从而消除了大部分由单个功率单元所引起的谐波电流,所以GBP系列变频器输入电流的总谐波含量(THD)远小于国家标准5%的要求,并且能保持接近1的输入功率因数。图3.1.1为6kV系列(每相六单元串联)输入电流实录波形,几近完美的正弦波。             图3.1.1输入电流波形    变频器输出是将多个三相输入、单相输出的低压功率单元串联叠波得到,表1列出了GBP系列变频器功率单元配置。    表1:GBP-H系列变频器功率单元配置          相输出Y接,中性点悬浮,得到驱动电机所需的可变频三相高压电源。图3.1.2为6kV变频器系列的电压叠加示意图。          图3.1.2 GBP-H-6kV电压叠加图             图3.1.2为六个580VAC功率单元串联时,每个功率单元输出的电压波形及其串联后输出的相电压波形示意图,可以得到?6~0~-6共13个不同的电平。增加电平的

文档评论(0)

317960162 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档