网站大量收购闲置独家精品文档,联系QQ:2885784924

文献综述--带互动界面的遗传算法演.doc

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
文献综述--带互动界面的遗传算法演

本科毕业设计文献综述 (201届) 示系统 带互动界面的遗传算法演示系统 摘要:本文是关于带互动界面的遗传算法演示系统设计与实现的一篇文献综述,先对遗传算法进行简单介绍,然后详述一下国内外相关研究现状以及现阶段存在的技术关键及问题,最后进行简单总结与预测未来的发展趋势。 关键词:遗传算法,选择,最优解,发展趋势 一、引言 遗传算法通过有组织的然而是随机的信息交换来重新结合那些适应性好的称为染色体的二进制数串,在每一代中,利用上一代串结构中适应性好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试新的位和段来替代原来的部分[1]。利用二进制编码的方法,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。 二、研究意义 遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究,广泛应用于自动控制、计算科学、模式识别、智能故障诊断管理科学和社会科学领域,适用于解决复杂的非线性和多维空间寻优问题[2]。利用遗传算法的有哪些信誉好的足球投注网站过程不受优化函数的连续性约束,也没有优化函数的导数必须存在的要求;遗传算法采用多点有哪些信誉好的足球投注网站或者说是群体有哪些信誉好的足球投注网站,具有很高的隐含并行性,因而可以提高计算速度;遗传算法更适合大规模复杂问题的优化。正因遗传算法有如此多的优点,所以对它的研究将具有重要意义。 标准遗传算法的流程如下表所示[3]: GA(Fitness, Fitness_threshold, p, r, m) Fitness:适应度评分函数,为给定假设赋予一个评估分数 Fitness_threshold:指定终止判据的阈值 p:群体中包含的假设数量 r:每一步中通过交叉取代群体成员的比例 m:变异率 初始化群体: P←随机产生的 p 个假设 评估:对于 P 中的每一个 h,计算 Fitness(h), 当[maxFitness(h)]<Fitness_threshold 时, 产生新的一代 Ps: (1)选择:用概率方法选择 P 的(1-r)p 个成员加入 Ps 从 P 中选择假设 hi 的概率 Pr(hi)用下面公式计算: (2)交叉:根据上面给出的 Pr(hi),从 P 中按概率 r*p/2 选择 对假设 对于每对假设<h1, h2>,应用交叉算子产生两个后代, 把所有的后代加入 Ps (3)变异:使用均匀的概率从 Ps 中选择成员,对于选出的每个 成员,在其表示中随机选择一个位取反 (4)更新: P ←Ps (5)评估:对于 P 中 h 的每个计算 Fitness(h) 从 P 中返回适应度最高的假设 三、国内外研究现状及难点 遗传算法最早是由美国Michigan大学的Holland教授和他的学生们在70年代初提出而创立的。从80年代开始,对遗传算法的研究与应用进入了一个新高潮,国际上有大量关于这方面的论文与研究成果。进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。应用研究尤其活跃,利用遗传算法进行优化和规则学习的能力显著提高。一些新的理论和方法在应用研究中也得到了迅速的发展。理论上,成功地应用齐次有限马尔科夫链理论分析了简单遗传算法、最优保存简单遗传算法和自适应遗传算法的收敛性,从而得到简单遗传算法不是全域收敛,而和是全域收敛的重要结论[5]。此外,有人利用马尔科夫链理论对浮点数编码的遗传算法进行了严密的全域收敛性分析,另有学者也研究了达到全局最优解的遗传算法的时间复杂性问题[6]。这些理论问题的相继解决,为遗传算法获得更好的实际应用奠定了基础。在遗传算法与其他方法的混合研究上较为成功,它既发挥了遗传算法的全局性特点又发挥了某一种方法对于某一特定问题有效收敛性的特长并且能够快速稳定的有哪些信誉好的足球投注网站到问题的全局最优解。主要的混合方法有并行遗传与神经网络混合学习方法,遗传与进化编程混合方法,模拟退火与遗传算法混合方法等[7]。 目前遗传算法已被广泛应用于自动控制、机器人学、计算机科学、模式识别、模糊与人工神经网络和工程优化设计等领域。 在国外,1975年Holland出版了他的著名专著《自然系统和人工系统的自适应》(Adaptation in Natural and Artificial Systems),这是第一本系统论述遗传算法的专著,因此有人把1975年作为遗传算法的诞生年。Holland在该书中系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极其重要的模式理论(schema theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性[8]。基于领域交叉的交叉算子这一概念是由D.Wh

文档评论(0)

2017meng + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档