第五章-均值比较和T检验.ppt

  1. 1、本文档共53页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第五章 均值比较与T检验 主要内容 5.1 统计推断与假设检验 5.2 Means过程 5.3 单样本T检验 5.4 两独立样本T检验 5.5 两配对样本T检验 5.1 统计推断与假设检验 1、参数检验 利用样本数据对总体特征的推断通常有两种情况: (1)当总体分布已知(如总体为正态分布)的情况下,对总体包含的参数进行推断的问题称为参数检验; (2)当总体分布未知的情况下,根据样本数据对总体的分布形式或特征进行推断,通常采用的统计推断方法是非参数检验方法。 5.1 统计推断与假设检验 1、参数检验 5.1 统计推断与假设检验 2、假设检验的几个概念 (1)统计假设 原假设:在很多情况下,我们给出一个统计假设仅仅是为了拒绝它。例如,如果我们要判断给定的一枚硬币是否均匀,则我们假设硬币是均匀的(即p=0.5,其中p是正面出现的概率)类似地,如果我们要判断一种方法是否优于其他的方法,则我们假设两种方法之间没有差异。这样的假设通常称为零假设或原假设,记为 备择假设:任何不同于零假设的假设都称为备择假设。例如,如果零假设是 ,则备择假设是 。备择假设记为 。 5.1 统计推断与假设检验 2、假设检验的几个概念 (2)假设检验的两类错误 第一类错误:在假设检验中拒绝了本来是正确的零假设,称为“弃真”错误 。 第二类错误:在假设检验中没有拒绝本来是错误的零假设,称为“取伪”错误 。 5.1 统计推断与假设检验 2、假设检验的几个概念 (3) 显著性水平 在作假设检验时,我们犯第一类错误的最大概率称为检验的显著性水平。这个概率常记为,通常抽样前就指定好,这样得到的结果才不会影响我们的选择。 在实际问题中,显著性水平可以有多种选择,但最为普通的是0.05或0.01。例如,如果设计一个决策法则选择的显著性水平是0.05(5%),那么在100次中可能有5次机会使我们拒绝本该接受的假设。也就是说,我们大约有95%的把握作出正确的决策。此时,我们说拒绝假设的显著性水平为0.05,即犯拒绝本应接受的假设这类错误的概率是0.05。 5.1 统计推断与假设检验 2、假设检验的几个概念 (4) 概率p值 p值是当零假设正确时,观测到的样本信息出现的概率。如果这个概率很小,以至于几乎不可能在零假设正确时出现目前的观测数据时,我们就拒绝零假设。p值越小,拒绝零假设的理由就越充分。但怎样的p值才算“小”呢?通常是与预先设定的显著性水平 值比较,若 值为0.05,p值小于0.05则认为该概率值足够小,应拒绝零假设。 5.1 统计推断与假设检验 3、假设检验的基本步骤 第1步 给出检验问题的原假设; 根据检验问题的要求,将需要检验的最终结果作为零假设。例如,需要检验某学校的高考数学平均成绩是否同往年的平均成绩一样,都为75,由此可做出零假设, 第2步 选择检验统计量; 在统计推断中,总是通过构造样本的统计量并计算统计量的概率值进行推断,一般构造的统计量应服从或近似服从常用的已知分布,例如均值检验中最常用的t分布和F分布等。 5.1 统计推断与假设检验 3、假设检验的基本步骤 第3步 计算检验统计量的观测值及其发生的概率值; 在给定零假设前提下,计算统计量的观测值和相应概率p值。概率p值就是在零假设 成立时检验统计量的观测值发生的概率,该概率值间接地给出了样本值在零假设成立的前提下的概率,对此可以依据一定的标准来判断其发生的概率是否为小概率。 第4步 在给定显著性水平条件下,做出统计推断结果。 这里的显著性水平指的是当假设正确时被拒绝的概率,即弃真概率,一般取0.01或0.05。当检验统计量的概率p值小于显著性水平时,则认为此时拒绝零假设而犯弃真错误的概率小于显著性水平,即低于预先给定的水平,也就是说犯错误的概率小到我们能容忍的范围,这时可以拒绝零假设;反之,如果检验统计量的概率p值大于显著性水平,如果拒绝零假设,犯弃真错误的概率大于预先给定的容忍水平,这时不应该拒绝零假设。 主要内容 5.1 统计推断与假设检验 5.2 Means过程 5.3 单样本T检验 5.4 两独立样本T检验 5.5 两配对样本T检验 5.2 Means过程 1、Means过程的主要功能 Means过程即均值过程,其主要功能是分组计算,比较指定变量的描述性统计量包括均值、标准差、总和、观测量数、方差等一系列单变量描述性统计量,还可以给出方差分析表和线性检验结果。 均值过程中系统默认的描述统计量可按分组给出指定变量的均值、标准差、观测量数等,对话框中的选项可以给出其他更加丰富的描述统计量。 5.2

文档评论(0)

moon8888 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档