[精品]双向可控硅 防雷电路中的元器件详细介绍电子工艺作业.doc

[精品]双向可控硅 防雷电路中的元器件详细介绍电子工艺作业.doc

  1. 1、本文档共152页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
[精品]双向可控硅 防雷电路中的元器件详细介绍电子工艺作业.doc

电子工艺作业 一:干簧管 简介:干簧管(Reed Switch)也称舌簧管或磁簧开关,是一种磁敏的特殊开关,是干簧继电器和接近开关的主要部件。它通常有两个软磁性材料做成的、无磁时断开的金属簧片触点,有的还有第三个作为常闭触点的簧片。这些簧片触点被封装在充有惰性气体(如氮、氦等)或真空的玻璃管里,玻璃管内平行封装的簧片端部重叠,并留有一定间隙或相互接触以构成开关的常开或常闭触点。 干簧管 干簧管比一般机械开关结构简单、体积小、速度高、工作寿命长;而与电子开关相比,它又有抗负载冲击能力强等特点,工作可靠性很高。 工作原理: 干簧管的接点形式有三种:一是如右图中(a)子图所示的常开接点(H)型,平时打开 干簧管结构图 ,只有簧片被磁化时,接点才接触;另两种是如右图中(b)子图所示的两种转换接点(Z)型:其结构上有三个簧片,上边的簧片2为常开接点,中间的簧片3为活动接点,下边的簧片1为常闭接点,簧片2和3必须用即导电又导磁的材料做成,最下边图示干簧管的簧片1必须用只导电不导磁的材料做成。平时,由于弹力的作用,1、3相连;当有外界磁力时,2、3磁化相吸(当中间干簧管的簧片1使用即导电又导磁的材料时1、3还有些微相斥作用)。如此形成一个转换开关:当永久磁铁靠近干簧管或绕在干簧管上的线圈通电形成的磁场使簧片磁化时,簧片的触点部分就会被磁力吸引,当吸引力大于簧片的弹力时,常开接点就会吸合;当磁力减小到一定程度时,接点被簧片的弹力打开。 干簧继电器:干簧管放在线圈里,就可以制成一个干簧继电器。在同一干簧继电器中可同时放置2~4个单簧管,以得到多对极点的干簧继电器。  干簧继电器的优点:  (1)体积小,质量轻;  (2)簧片轻而短,有固有频率,可提高接点的通断速度,通断的时间仅为1~3ms,比一般的电磁继电器快5~10倍;  (3)接点与大气隔绝,管内有稀有气体,可减少接点的氧化合碳化,并且由于密封,可防止外界有机蒸气和尘埃杂质对接点的侵蚀。 二:水银开关 简介: 水银开关 水银开关,又称倾侧开关,是电路开关的一种,以一接着电极的小巧容器储存着一小滴水银,容器中多数为真空或注入惰性气体。 水银开关的工作原理和具体样品: 原理    水银开关剖析图 因为重力的关系,水银水珠会随容器中较低的地方流去,如果同时接触到两个电极的话,开关便会将电路闭合,开启开关。  容器的形状亦会影响水银水珠接触电极的条件,例如邮包炸弹使用的会是倒 V 字型的,令收件人在不知情的情况下倾侧邮包,闭合电路,制动爆炸,但送件人(或是邮包携带者或制造者)则不会。  注意:水银对人体及环境均有毒害,因此使用水银开关时,请务必小心谨慎,以免破出;在不再使用时,也应该妥善处理。样品    所示为玻璃壳封装的水银开关,也是使用最多的一种形式,这种水银开关倾斜一个工作角度时,两个电极通过水银便可进行开关的通、断动作。玻璃管封装式水银开关的优点是可以从外部观察到它的工作状态,缺点是容易破碎。为使玻璃管封装式水银开关不易破碎,人们设计了如(b)所示的具有塑料保护外壳的结构。(c)为金属外壳水银开关,金属外壳本身就是一个电极。 水银开关和振动开关的区别 1、滚珠开关所有材料均可达到环保要求,而水银开关`因本身材质问题无法达到。  2、滚珠开关因导通方式是通金属珠同触发导针通电产生信号的,因滚珠同触发导针的接触面积较小且滚珠是活动的,因此导通有时会有闪断现象,而水银开关是汞同触发端接触,因汞是液态,接触面大稳定,一般来说导通效果更稳定。  3、滚珠开关是金属壳体,结构强度较好。 三:热敏电阻 简介:热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。 检测   检测时,用万用表欧姆档(视标称电阻值确定档位,一般为R×1挡),具体可分两步操作:首先常温检测(室内温度接近25℃),用鳄鱼夹代替表笔分别夹住PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。其次加温检测,在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近热敏电阻对其加热,观察万用表示数,此时如看到万用示数随温度的升高而改变,这表明电阻值在逐渐改变(负温度系数热敏电阻器NTC阻值会变小,正温度系数热敏电阻器PTC阻值会变大),当阻值改变到一定数值时显示数据会逐渐稳定,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。  测试时应注意

您可能关注的文档

文档评论(0)

zhangningclb + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档