网站大量收购闲置独家精品文档,联系QQ:2885784924

joint lowrank and sparse principal feature coding for enhanced robust representation and visual classification.ieee trans image process10.116文档.pdf

joint lowrank and sparse principal feature coding for enhanced robust representation and visual classification.ieee trans image process10.116文档.pdf

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
joint lowrank and sparse principal feature coding for enhanced robust representation and visual classification.ieee trans image process10.116文档

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 6, JUNE 2016 2429 Joint Low-Rank and Sparse Principal Feature Coding for Enhanced Robust Representation and Visual Classification Zhao Zhang, Member, IEEE , Fanzhang Li, Mingbo Zhao, Member, IEEE , Li Zhang, Member, IEEE , and Shuicheng Yan, Senior Member, IEEE Abstract — Recovering low-rank and sparse subspaces jointly I. INTRODUCTION for enhanced robust representation and classification is dis- N NUMEROUS practical applications, most real-world cussed. Technically, we first propose a transductive low-rank and sparse principal feature coding (LSPFC) formulation that Idata can be characterized with high-dimensional attributes decomposes given data into a component part that encodes low- or features. But high-dimensional data often have unfavorable rank sparse principal features and a noise-fitting error part. features, redundant information or (grossly) corruptions, so the To well handle the outside data, we then present an inductive study on how to recover the original data accurately by feature LSPFC (I-LSPFC). I-LSPFC incorporates embedded low-rank learning or low-rank/sparse coding has been extracting much and sparse principal features by a projection into one problem for direct minimization, so that the projection can effectively map attention in the past years. Feature learning aims to find a both inside and outside data into the underlying subspaces to transformation or mapping to conver

您可能关注的文档

文档评论(0)

seunk + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档