云计算时代得社交网络.ppt

  1. 1、本文档共70页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
云计算时代得社交网络

Shaighai Offsite Google Confidential Ed Chang 云计算时代的社交网络 平台和技术 张智威 副院长, 研究院, 谷歌中国 教授, 电机工程系, 加州大学 China Opportunity China US in 2006-07 Google China Size (~700) 200 engineers 400 other employees Almost 100 interns Locations Beijing (2005) Taipei (2006) Shanghai (2007) Organizing the World’s Information, Socially 社区平台 (Social Platform) 云运算 (Cloud Computing) 结论与前瞻 (Concluding Remarks) Web 1.0 Web with People (2.0) + Social Platforms 开放社区平台 开放社区平台 开放社区平台 Social Graph What Users Want? People care about other people care about people they know connect to people they do not know Discover interesting information based on other people about who other people are about what other people are doing Information Overflow Challenge Too many people, too many choices of forums and apps “I soon need to hire a full-time to manage my online social networks” Desiring a Social Network Recommendation System Recommendation System Friend Recommendation Community/Forum Recommendation Application Suggestion Ads Matching Organizing the World’s Information, Socially 社区平台 (Social Platform) 云运算 (Cloud Computing) 结论与前瞻 (Concluding Remarks) Collaborative Filtering Collaborative Filtering (CF) [Breese, Heckerman and Kadie 1998] Memory-based Given user u, find “similar” users (k nearest neighbors) Bought similar items, saw similar movies, similar profiles, etc. Different similarity measures yield different techniques Make predictions based on the preferences of these “similar” users Model-based Build a model of relationship between subject matters Make predictions based on the constructed model Memory-Based Model [Goldbert et al. 1992; Resnik et al. 1994; Konstant et al. 1997] Pros Simplicity, avoid model-building stage Cons Memory and Time consuming, uses the entire database every time to make a prediction Cannot make prediction if the user has no items in common with other users Model-Based Model [Breese et al. 1998; Hoffman 1999; Blei et al. 2004] Pros Scalability, model is much

文档评论(0)

138****7331 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档