Computational Cognitive Neuroscience Lab:计算认知神经科学实验室.ppt

Computational Cognitive Neuroscience Lab:计算认知神经科学实验室.ppt

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Computational Cognitive Neuroscience Lab:计算认知神经科学实验室

Computational Cognitive Neuroscience Lab Today: Model Learning Computational Cognitive Neuroscience Lab Today: Homework is due Friday, Feb 17 Chapter 4 homework is shorter than the last one! Undergrads omit 4.4, 4.5, 4.7c, 4.7d Hebbian Learning “Neurons that fire together, wire together” Correlations between sending and receiving activity strengthens the connection between them “Don’t fire together, unwire” Anti-correlation between sending and receiving activity weakens the connection LTP/D via NMDA receptors NMDA receptors allow calcium to enter the (postsynaptic) cell NMDA are blocked by Mg+ ions, which are cast off when the membrane potential increases Glutamate (excitatory) binds to unblocked NMDA receptor, causes structural change that allows Ca++ to pass through Calcium and Synapses Calcium initiates multiple chemical pathways, dependent on the level of calcium Low Ca++ long term depression (LTD) High Ca++ long term potentiation (LTP) LTP/D effects: new postsynaptic receptors, incresed dendritic spine size, or increased presynaptc release processes (via retrograde messenger) Fixing Hebbian learning Hebbian learning results in infinite weights! Oja’s normalization (savg_corr) When to learn? Conditional PCA--learn only when you see something interesting A single unit hogs everything? kWTA and Contrast enhancement -- specialization Principal Components Analysis (PCA) Principal, as in primary, not principle, as in some idea PCA seeks a linear combination of variables such that maximum variance is extracted from the variables. It then removes this variance and seeks a second linear combination which explains the maximum proportion of the remaining variance, and so on until you run out of variance. PCA continued This is like linear regression, except you take the whole collection of variables (vector) and correlate it with itself to make a matrix. This is kind of like linear regression, where a whole collection of variables is regressed on itself The line of best

文档评论(0)

almm118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档