网站大量收购闲置独家精品文档,联系QQ:2885784924

突破新兴高效能电源要求上限制.docVIP

突破新兴高效能电源要求上限制.doc

此“经济”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
突破新兴高效能电源要求上限制

突破新兴高效能电源要求上限制   美国环保署(EPA)的能源之星(Energy Star)计划在2007年7月20日正式开始实施,这是针对个人电脑在不同负载下最低效能要求的规范。同时,它也为其他设备,包括企业服务器、外部电源(使用在如游戏机或笔记本电脑等)以及一系列家用设备规划或制定了类似的要求。由于能源之星在制定时都会和其他国家和地区的同类机构合作,因此它已在这些国家得到了采用。   电源在降低功耗上举足轻重,因此面对法规标准和消费者的更高要求时,重新检讨其设计方式就显得非常急迫。虽然可以改进传统的拓扑结构来达到更高效能要求,但可以明显地看出,沿用旧式设计方式的产品,其性价比将会低。在本文中,我们将提出两个能符合更高效能要求,并可控制目标成本的设计方式,并将之和传统的拓扑结构进行比较。      传统的拓扑结构      为特定应用选择拓扑结构时有几个考虑因素,包括输入电压范围是全球通用还是只针对特定地区,输出电压是单一还是多重(电流大小也是重要的条件),效能目标,特别是在不同负载下的效能表现。传统上,在大批量生产电源时多以成本,设计工程师对拓扑结构的熟悉度以及元件是否容易采购为考虑因素,其他因素还包括设计是否容易实现和设计方式是否在电源产业链中为大家所熟知等。   较受欢迎的传统设计方式主要为单开关正向、双开关正向和半桥结构,这些结构提供了满足目前需求的稳固解决方案。不过如上所述,新兴的标准需要电源能够达成比先前更高的效能。过去,典型的台式电脑电源可以达到60%~70%的最高效能,但现在则要求电源在额定负载的20%、50%和100%时都能达到最低80%的效能。同时,最近更出现了希望能够在低于20%负载时达到70%或以上效能的趋势,且待机功耗能够持续下降。我们将探讨三种传统拓扑的优缺点,并介绍两种新型的拓扑。      1 单开关正向   图1中的这个拓扑相当受到欢迎,主要原因是元件数少且设计要求简单,但对于不同负载情况的高效能要求却为这个拓扑带来新挑战。在接近满载或满载时,这个拓扑的效能受到50%占空比的限制。而在较轻负载时,开关耗损是造成效能不佳的主要原因。许多较新的设计采用功率因数校正(PFC)前端来降低谐波电流,在400V的PFC输出电压下,单开关正向方式被迫使用大于900V的开关,提高了FET的成本。      2 双开关正向   图2是另一个使用相当普遍的拓扑,它是解决开关电压限制问题的升级版本。这依旧是一个会有高开关耗损的硬开关电路。其所带来的问题是需要使用门极驱动变压器或芯片驱动电路来推动高电压端MOSFET。      3 半桥   图3中的半桥变压器是高功率要求的另一个选择。和单开关或双开关正向变压器相反,半桥变压器可以在两个象限工作并降低原边FET的电流。变压器组成结构和输出整流比单一正向拓扑结构复杂,也存在高开关耗损问题。      新兴拓扑结构      为了符合更高效能的要求,业界已开发了数种新的拓扑结构。这些新电路拓扑不一定是指新发明,而是新近在商业大批量应用的。其中,两种最受重视的拓扑分别为有源钳位正激和双电感加电容(LLC)。      1 有源钳位正激   图4中的有源钳位正激拓扑是一个存在已久的软开关结构,虽然这种结构和传统的正向式拓扑结构类似,但过去一直被视为是难以实现的结构,因此主要应用在特殊领域,比如电信领域。不过,随着新IC的推出,这种结构的实现变得非常简单。   在这个拓扑结构中,变压器在主开关的整个关闭时间内通过附属开关串行的电容进行复位,这样做可以消除单开关正向结构中的无效时间。它的主要优点包括低开关耗损,可在50%以上占空比工作,降低了原边开关的电流应力。同时,这个结构也提供了自驱动同步整流功能,省去了专用门极驱动电路。加之低电压MOSFET越来越低的价格,采用MOSFET和同步整流已经成为实现低输出电压高电流整流的可行方案。   使用有源钳位器件和进行有源钳位FET的控制虽然看起来会增加电路的复杂度,但却可以通过节省缓冲电路、复位电路和较低整体开关要求加以补偿。这个结构也能够在宽广的输入电压范围下工作,因而适合多种应用,包括电视游戏机。   这个结构的主要缺点是没有大批量应用,比如在计算机中,因此一般台式机的设计工程师对它感到陌生。不过随着像安森美半导体等公司不断推出产品,这个拓扑结构的实现难度已经降低了。在较大批量应用中采用这个结构也能够降低采用元件的成本。这个拓扑的另一缺点是,和双开关正向或半桥变压器比较,需要较高额定电压的开关。      2 LLC谐振半桥   图5中的LLC拓扑结构特别适用需要高输出电压的场合,如液晶和等离子电视等应用。   和有源钳位拓扑一样,这也是一款因超低开关耗损达到超高效能的

文档评论(0)

bokegood + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档