- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
结合全局和局部正则化半监督二分类算法
结合全局和局部正则化半监督二分类算法
摘要:针对在半监督分类问题中单独使用全局学习容易出现的在整个输入空间中较难获得一个优良的决策函数的问题,以及单独使用局部学习可在特定的局部区域内习得较好的决策函数的特点,提出了一种结合全局和局部正则化的半监督二分类算法。该算法综合全局正则项和局部正则项的优点,基于先验知识构建的全局正则项能平滑样本的类标号以避免局部正则项学习不充分的问题,通过基于局部邻域内样本信息构建的局部正则项使得每个样本的类标号具有理想的特性,从而构造出半监督二分类问题的目标函数。通过在标准二类数据集上的实验,结果表明所提出的算法其平均分类正确率和标准误差均优于基于拉普拉斯正则项方法、基于正则化拉普拉斯正则项方法和基于局部学习正则项方法。
关键词:半监督学习;二分类问题;全局正则化;局部正则化;平滑
中图分类号: TP18;TP391.4;TP301.6文献标志码:A
Semi-supervised binary classification algorithm based on
global and local regularization
英文作者名L? Jia1,2,3*
英文地址(1. School of Mathematical Sciences, Inner Mongolia University, Hohhot Nei Mongol 010021, China;
2.College of Computer and Information Science, Chongqing Normal University, Chongqing 400047, China;
3.College of Science, China Agricultural University, Beijing 100083, China)
Abstract: As for semi-supervised classification problem, it is difficult to obtain a good classification function for the entire input space if global learning is used alone, while if local learning is utilized alone, a good classification function on some specified regions of the input space can be got. Accordingly, a new semi-supervised binary classification algorithm based on a mixed local and global regularization was presented in this paper. The algorithm integrated the benefits of global regularizer and local regularizer. Global regularizer was built to smooth the class labels of the data so as to lessen insufficient training of local regularizer, and based upon the neighboring region, local regularizer was constructed to make class label of each data have the desired property, thus the objective function of semi-supervised binary classification problem was constructed. Comparative semi-supervised binary classification experiments on some benchmark datasets validate that the average classification accuracy and the standard error of the proposed algorithm are obviously superior to other algorithms.
Key words: semi-supervised learning; binary classification problem
文档评论(0)