- 1、本文档共174页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
深度学习在自然语言(nlp)的实践-.doc
Practical Neural
Networks for NLP
Chris Dyer, Yoav Goldberg, Graham Neubig
November 1, 2016
EMNLP
Neural Nets and Language
Tension: Language and neural nets
?
Language is discrete and structured
?
Sequences, trees, graphs
?
Neural nets represent things with continuous vectors
?
Poor “native support” for structure
?
The big challenge is writing code that translates between the
?
{discrete-structured, continuous} regimes
This tutorial is about one framework that lets you use the power of
?
neural nets without abandoning familiar NLP algorithms
Outline
Part 1
?
Computation graphs and their construction
Neural Nets in DyNet
?
?
?
?
?
Recurrent neural networks
Minibatching
Adding new differentiable functions
Outline
Part 2: Case Studies
?
Tagging with bidirectional RNNs
?
?
?
Transition-based dependency parsing
Structured prediction meets deep learning
Computation Graphs
Deep Learning’s Lingua Franca
expression:
y=xAx+b·x+c
expression:
y=xAx+b·x+c
graph:
x
expression:
y=xAx+b·x+c
graph:
A node is a {tensor, matrix, vector, scalar} value
x
expression:
y=xAx+b·x+c
graph:
f(u)=u
x
An edge represents a function argument
(and also an data dependency). They are just
y=x Ax+b·x+c
pointers to nodes.
graph:
f(u)=u
x
An edge represents a function argument
(and also an data dependency). They are just
y=x Ax+b·x+c
pointers to nodes.
A node with an incoming edge is a function of
graph:
that edge’s tail node.
f(u)=u
x
An edge represents a function argument
(and also an data dependency). They are just
y=x Ax+b·x+c
pointers to nodes.
A node with an incoming edge is a function of
graph:
that edge’s tail node.
A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
@F
times a derivative of an arbitrary input .
@f(u)
@f@(uu)@f@F(u) =?@f@(Fu)
◆
f(u)=u
x
expression:
y=xAx+b·x+c
graph:
Functions can be nullary, unary,
binary, … n-ary. Often they are unary or binary.
f(U,V)=UV
f(u)=u
A
x
expre
文档评论(0)