网站大量收购闲置独家精品文档,联系QQ:2885784924

深度学习在自然语言(nlp)的实践-.doc

  1. 1、本文档共174页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
深度学习在自然语言(nlp)的实践-.doc

Practical Neural Networks for NLP Chris Dyer, Yoav Goldberg, Graham Neubig November 1, 2016 EMNLP Neural Nets and Language Tension: Language and neural nets ? Language is discrete and structured ? Sequences, trees, graphs ? Neural nets represent things with continuous vectors ? Poor “native support” for structure ? The big challenge is writing code that translates between the ? {discrete-structured, continuous} regimes This tutorial is about one framework that lets you use the power of ? neural nets without abandoning familiar NLP algorithms Outline Part 1 ? Computation graphs and their construction Neural Nets in DyNet ? ? ? ? ? Recurrent neural networks Minibatching Adding new differentiable functions Outline Part 2: Case Studies ? Tagging with bidirectional RNNs ? ? ? Transition-based dependency parsing Structured prediction meets deep learning Computation Graphs Deep Learning’s Lingua Franca expression: y=xAx+b·x+c expression: y=xAx+b·x+c graph: x expression: y=xAx+b·x+c graph: A node is a {tensor, matrix, vector, scalar} value x expression: y=xAx+b·x+c graph: f(u)=u x An edge represents a function argument (and also an data dependency). They are just y=x Ax+b·x+c pointers to nodes. graph: f(u)=u x An edge represents a function argument (and also an data dependency). They are just y=x Ax+b·x+c pointers to nodes. A node with an incoming edge is a function of graph: that edge’s tail node. f(u)=u x An edge represents a function argument (and also an data dependency). They are just y=x Ax+b·x+c pointers to nodes. A node with an incoming edge is a function of graph: that edge’s tail node. A node knows how to compute its value and the value of its derivative w.r.t each argument (edge) @F times a derivative of an arbitrary input . @f(u) @f@(uu)@f@F(u) =?@f@(Fu) ◆ f(u)=u x expression: y=xAx+b·x+c graph: Functions can be nullary, unary, binary, … n-ary. Often they are unary or binary. f(U,V)=UV f(u)=u A x expre

文档评论(0)

cai + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档