网站大量收购闲置独家精品文档,联系QQ:2885784924

sensitivity analysis of constrained linear regression perturbations to constraints, addition and deletion of observations文档.pdf

sensitivity analysis of constrained linear regression perturbations to constraints, addition and deletion of observations文档.pdf

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
sensitivity analysis of constrained linear regression perturbations to constraints, addition and deletion of observations文档

Computational Statistics Data Analysis 51 (2006) 1213– 1231 /locate/csda Sensitivity analysis of constrained linear L1 regression: Perturbations to constraints, addition and deletion of observations Mark A. Lukasa ,∗, Mingren Shib aMathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia bMathematics and Computing, University of Southern Queensland, Toowoomba, Qld 4350, Australia Received 20 May 2003; received in revised form 26 March 2004; accepted 6 April 2004 Available online 20 July 2006 Abstract This paper extends the direct sensitivity analysis of Shi and Lukas [2005, Sensitivity analysis of constrained linear L1 regression: perturbations to response and predictor variables. Comput. Statist. Data Anal. 48, 779–802] of linear L1 (least absolute deviations) regression with linear equality and inequality constraints on the parameters. Using the same active set framework of the reduced gradient algorithm (RGA), we investigate the effect on the L1 regression estimate of small perturbations to the constraints (constants and coefficients). It is shown that the constrained estimate is stable, but not uniformly stable, and in certain cases it is unchanged. We also consider the effect of addition and deletion of observations and determine conditions under which the estimate is unchanged. The results demonstrate the robustness of L1 regression and provide useful diagnostic information about the influence of observations. Results characterizing the (possibly non-unique) solution set are also given. The sensitivity results are illustrated with numerical simulations on the problem of derivative estimati

文档评论(0)

seunk + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档