复杂网络聚类及其在神经网络中的应用分析-analysis of complex network clustering and its application in neural networks.docx
- 1、本文档共47页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
复杂网络聚类及其在神经网络中的应用分析-analysis of complex network clustering and its application in neural networks
摘 要当今,随着信息技术的高速发展,数据量正在呈指数增长,如 何快速、准确地从大规模、杂乱无章的数据中找到所需信息就成了 一项十分有意义的课题。聚类分析方法作为数据挖掘技术中的重要 方法之一,它恰好为海量数据的研究分析提供了一种方法,并被广 泛应用到现实社会的各个领域。但是聚类分析方法中的很多聚类算 法要求事先确定聚类数目,如何确定聚类数目是一个复杂而艰巨的 问题。近年来,人工神经网络因具有较高的非线性、并行性、良好的 容错性及较强的鲁棒性等优点,在许多领域中得到了广泛的应用。 尤其是 RBF 神经网络有很强的非线性拟合能力,可映射任意复杂的 非线性关系,但是 RBF 神经网络的非线性映射能力体现在隐含层基 函数上,基函数的特性主要由基函数的中心确定,而在实际应用中 基函数中心的确定是一个困难的问题。基于上面的问题,本文研究将复杂网络的社团划分技术与相似 度量相结合的聚类算法,解决事先确定聚类数目的问题,并把该算 法引入神经网络对 RBF 神经网络的中心进行优化,最后试验验证。 本文首先阐述了当前常用的社团发现算法,分析了各种算法优 缺点。然后通过对 k-均值聚类算法的研究分析,提出了一种基于复 杂网络社团发现的 CNM 算法与相似度量相结合的聚类算法,该算 法克服了 k-均值算法需根据先验知识确定聚类个数的缺陷,通过二 个聚类分析实验表明该算法提高了聚类的质量。最后基于复杂网络I社团发现算法与相似度量相结合的聚类算法,提出了用该算法对RBF 神经网络的中心值进行优化,经二个实验验证,该算法有效的 克服了 RBF 神经网络算法的缺点,提高了网络的精度。关键词:复杂网络;社团结构;RBF 神经网络;聚类ABSTRACTNowadays,with the rapid development of information technology, the amount of data is growing exponentially. How to find the information quickly and accurately from the large and chaotic data has become a very interesting topic. The clustering analysis method of data mining technology is one of the important methods, which provides a data research and analysis method for huge amounts of data and applies to various areas of real world widely. However, most of the cluster analysis algorithm requires pre-determined the number of clustering, how to determine the number of clustering is a complex and difficult problem.In recent years, artificial neural network due to high non-linear, parallel, good fault tolerance and strong robustness, etc., it has been widely used in many areas. Especially RBF neural networks have a strong ability of nonlinear fitting can map arbitrary, complex and nonlinear relation, but its ability of mapping nonlinear is reflected in the hidden basis function, the basis function of the characteristics of the main determined by the basic function of the center. However, the determination of basis function center is a difficult problem in practice.Based on the above issues, we discuss the clustering algorithm which combined the complex network
您可能关注的文档
- 房地产税收政策对房地产市场影响的实证分析-----以太原市为例-empirical analysis of the influence of real estate tax policy on the real estate market - taking taiyuan city as an example.docx
- 房地产投资对经济增长影响的机制分析——来自省际面板数据的经验证据-mechanism analysis of the impact of real estate investment on economic growth - empirical evidence from provincial panel data.docx
- 房地产投资风险评价与防范分析——以nt房地产项目为例-risk assessment and prevention analysis of real estate investment - taking nt real estate project as an example.docx
- 房地产投资与经济波动的相互影响问题分析-analysis of the mutual influence between real estate investment and economic fluctuation.docx
- 房地产项目工程进度控制研究——以金阶尚城项目为例-research on schedule control of real estate project —— taking jinjie shangcheng project as an example.docx
- 房地产项目计划管理问题和对策分析-analysis on problems and countermeasures of real estate project plan management.docx
- 房地产网站内容生产研究——以合肥搜房网和合肥房地产交易网为例-research on content production of real estate websites - taking hefei soufang website and hefei real estate trading website as examples.docx
- 房地产项目投资时机选择的期权博弈评价模型及其应用分析-option game evaluation model for real estate project investment timing and its application analysis.docx
- 房地产业银行金融资本过度膨胀的法律规制分析-analysis on legal regulation of excessive expansion of financial capital of real estate banks.docx
- 房地产业对我国经济增长的贡献及对通胀影响分析-contribution of real estate industry to china's economic growth and its impact on inflation.docx
文档评论(0)