- 1、本文档共51页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
人工神经网络 的研究方法及应用ppt
人工神经网络 的研究方法及应用刘 长 安2004. 12. 31 引 言 利用机器模仿人类的智能是长期以来人们认识自然、改造自然和认识自身的理想。 研究ANN目的: (1)探索和模拟人的感觉、思维和行为的规律,设计具有人类智能的计算机系统。 (2)探讨人脑的智能活动,用物化了的智能来考察和研究人脑智能的物质过程及其规律。 研究ANN方法 (1)生理结构的模拟: 用仿生学观点,探索人脑的生理结构,把对人脑的微观结构及其智能行为的研究结合起来即人工神经网络(Artificial Neural Netwroks,简称ANN)方法。 (2)宏观功能的模拟: 从人的思维活动和智能行为的心理学特性出发,利用计算机系统来对人脑智能进行宏观功能的模拟,即符号处理方法。 ANN的研究内容 (1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法。 (2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径。 (3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。 人工神经网络概述 什么是人工神经网络? T.Koholen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。” 脑神经信息活动的特征 (1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。 ANN研究的目的和意义 (1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。 (2)争取构造出尽可能与人脑具有相似功能的计算机,即ANN计算机。 (3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。 神经网络研究的发展 (1)第一次热潮(40-60年代未) 1943年,美国心理学家W.McCulloch和数学家W.Pitts在提出了一个简单的神经元模型,即MP模型。1958年,F.Rosenblatt等研制出了感知机(Perceptron)。 (2)低潮(70-80年代初): (3)第二次热潮 1982年,美国物理学家J.J.Hopfield提出Hopfield模型,它是一个互联的非线性动力学网络他解决问题的方法是一种反复运算的动态过程,这是符号逻辑处理方法所不具备的性质. 1987年首届国际ANN大会在圣地亚哥召开,国际ANN联合会成立,创办了多种ANN国际刊物。1990年12月,北京召开首届学术会议。 神经网络基本模型 人工神经网络研究的局限性 (1)ANN研究受到脑科学研究成果的限制。 (2)ANN缺少一个完整、成熟的理论体系。 (3)ANN研究带有浓厚的策略和经验色彩。 (4)ANN与传统技术的接口不成熟。 环境质量评价 环境系统因素预测 环境因素定量关系模拟 构效分析、成因分析 污染防治系统建模 基本BP网络的拓扑结构 5.网络模型的性能和泛化能力 训练神经网络的首要和根本任务是确保训练好的网络模型对非训练样本具有好的泛化能力(推广性),即有效逼近样本蕴含的内在规律,而不是看网络模型对训练样本的拟合能力。从存在性结论可知,即使每个训练样本的误差都很小(可以为零),并不意味着建立的模型已逼近训练样本所蕴含的规律。因此,仅给出训练样本误差(通常是指均方根误差RSME或均方误差、AAE或MAPE等)的大小而不给出非训练样本误差的大小是没有任何意义的。 要分析建立的网络模型对样本所蕴含的规律的逼近情况(能力),即泛化能力,应该也必须用非训练样本(本文称为检验样本和测试样本)误差的大小来表示和评价,这也是之所以必须将总样本分成训练样本和非训练样本而绝不能将全部样本用于网络训练的主要原因之一。判断建立的模型是否已有效逼近样本所蕴含的规律,最直接和客观的指标是从总样本中随机抽取的非训练样本(检验样本和测试样本)误差是否和训练样本的误差一样小或稍大。非训练样本误差很接近训练样本误差或比其小,一般可认为建立的网络模型已有效逼近训练样本所蕴含的规律,否则,若相差很多(如几倍、几十倍甚至上千倍)就说明建立的网络模型并没有有效逼近训练样本所蕴含的规律,而只是在这些训练样本点上逼近而已,而建立的网络模型是对训练样本所蕴含规律的错误反映。 因为训练样本的误差可以达到很小,因此,
您可能关注的文档
最近下载
- 演出合同范本13篇.pdf VIP
- 佳能EOS6D使用说明.docx
- 世茂集团工程招投标技术标管理制度.docx
- 长安铃木吉姆尼电路图.pdf
- 美国材料与试验协会A480-A480M-2016_平扎不锈钢及耐热钢中板、薄板及钢带的一般要求[1](中文版).doc
- 地铁保洁服务投标方案(技术标).docx
- 2022年湖南衡阳市衡东县人大代表服务中心选调考试备考试题及答案解析.docx VIP
- 3完整版本.1固相反应.ppt VIP
- 2025高考英语时事热点阅读专练10 自然和宇宙探索(学生版+解析版).docx
- 2023年北京中考数学重难题型01新定义创新型综合压轴问题(13-22年最后一题+真题10道模拟30道)含详解.pdf VIP
文档评论(0)