- 1、本文档共68页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数学建模因子分析PPT课件
因子分析可以看作是主成分分析的推广和扩展,但它对问题的研究更深入、更细致一些。实际上,主成分分析可以看作是因子分析的一个特例 简言之,因子分析是通过对变量之间关系的研究,找出能综合原始变量的少数几个因子,使得少数因子能够反映原始变量的绝大部分信息,然后根据相关性的大小将原始变量分组,使得组内的变量之间相关性较高,而不同组的变量之间相关性较低。因此,因子分析属于多元统计中处理降维的一种统计方法,其目的就是要减少变量的个数,用少数因子代表多个原始变量 什么是因子分析? (factor analysis) 因变量和因子个数的不一致,使得不仅在数学模型上,而且在实际求解过程中,因子分析和主成分分析都有着一定的区别,计算上因子分析更为复杂 因子分析可能存在的一个优点是:在对主成分和原始变量之间的关系进行描述时,如果主成分的直观意义比较模糊不易解释,主成分分析没有更好的改进方法;因子分析则额外提供了“因子旋转(factor rotation)”这样一个步骤,可以使分析结果尽可能达到易于解释且更为合理的目的 因子分析的数学模型 原始的p个变量表达为k个因子的线性组合变量 设p个原始变量为 ,要寻找的k个因子(kp)为 ,主成分和原始变量之间的关系表示为 因子分析的数学模型 因子分析的数学模型 系数aij为第个i变量与第k个因子之间的线性相关系数,反映变量与因子之间的相关程度,也称为载荷(loading)。由于因子出现在每个原始变量与因子的线性组合中,因此也称为公因子。?为特殊因子,代表公因子以外的因素影响 k f f f , , , … 2 1 p x x x , , , … 2 1 共同度量(Communality) 因子的方差贡献率 因子分析的数学模型(共同度量Communality和公因子的方差贡献率 ) 变量xi的信息能够被k个公因子解释的程度,用 k个公因子对第i个变量xi的方差贡献率表示 第j个公因子对变量xi的提供的方差总和,反映第j个公因子的相对重要程度 因子分析的步骤 因子分析要求样本的个数要足够多 一般要求样本的个数至少是变量的5倍以上。同时,样本总数据量理论要求应该在100以上 用于因子分析的变量必须是相关的 如果原始变量都是独立的,意味着每个变量的作用都是不可替代的,则无法降维 检验方法 计算各变量之间的相关矩阵,观察各相关系数。若相关矩阵中的大部分相关系数小于0.3,则不适合作因子分析 使用Kaiser-Meyer-Olkin检验(简称KMO检验)和 Bartlett球度检验(Bartlett’s test of sphericity)来判断(SPSS将两种检验统称为“KMO and Bartlett’s test of sphericity”) 因子分析的步骤(数据检验) Bartlett球度检验 以变量的相关系数矩阵为基础,假设相关系数矩阵是单位阵(对角线元素不为0,非对角线元素均为0)。如果相关矩阵是单位阵,则各变量是独立的,无法进行因子分析 KMO检验 用于检验变量间的偏相关性,KMO统计量的取值在0~1之间 如果统计量取值越接近1,变量间的偏相关性越强,因子分析的效果就越好 KMO统计量在0.7以上时,因子分析效果较好;KMO统计量在0.5以下时,因子分析效果很差 因子分析的步骤(数据检验) Principal components(主成分法):多数情况下可以使用该方法(这也是SPSS的默认选项)。通过主成分分析的思想提取公因子,它假设变量是因子的线性组合 Unweight Least Square(不加权最小平方法):该方法使实际的相关矩阵和再生的相关矩阵之差的平方和达到最小 Generalized Least Square(加权最小平方法):用变量值进行加权,该方法也是使实际的相关矩阵和再生的相关矩阵之差的平方和达到最小 Maximum Likelihood(最大似然法):该方法不要求数据服从正态分布,在样本量较大时使用较好 Principal Axis Factoring(主轴因子法):该方法从原始变量的相关性出发,使得变量间的相关程度尽可能地被公因子解释 因子分析的步骤(因子提取) 因子数量的确定 用公因子方差贡献率提取:与主成分分析类似,一般累计方差贡献率达到80%以上的前几个因子可以作为最后的公因子 用特征根提取:一般要求因子对应的特征根要大于1,因为特征根小于1说明该共因子的解释力度太弱,还不如使用原始变量的解释力度大 实际应用中,因子的提取要结合具体问题而定,在某种程度上,取决于研究者自身的知识和经验 因子分析的步骤(因子提取) 因子命名是因子分析重要一步 一个因子包含了多
文档评论(0)