P2P风险控制论文.docx

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
P2P风险控制论文

【洞察】真正的P2P是这样控制风险的 金融投资商学院 2014年10月9日说起P2P,多数金融圈内人士已经并不陌生。国内现有近千家的P2P网贷平台,动辄打出高息诱人的收益率宣传口号以及眼花缭乱的安全承诺。但是在这些浮华表面的背后,关于P2P的风控很多人仍然是一知半解,甚至不少长期P2P圈内的资深玩家对此也是“既没吃过猪肉,也没见过猪跑”。 但是不可否认的是,作为一种跳过银行间接贷款融资模式的、一种在借款人和出借人之间直接发生借贷关系的业务模式,P2P业务的核心正在于团队自身的风险定价能力,即风险管理能力是P2P公司的核心竞争力。那么,P2P公司是如何进行风险管理的?什么样的风控平台是更为有效的呢?1职能明确的风控部门 在信贷金融领域,根据不同借款额度,往往对应的是不同的风控审批手段。从业内看,超过100万以上的借款基本采用与银行相同的借款风控手段,实地真人考察,另外再加抵押物。而20-100万之间,可以用类似IPC的风控技术,没有抵押物,但较接近银行审核手段,不能集中化审核,容易导致审核标准不一。 而P2P从本质上讲,更多应该是专注于1-20万之间的信用无抵押借款,这是与银行、小贷和担保公司目前很难覆盖的领域,爱钱进正是选择专注于这类型的借款客户开发。在这种模式中,风险管理采用总部集中式的数据化风控模式,从而解决审核标准不统一以及审核人员快速扩张需要依赖长期经验积累的问题。在总部风控部门设立方面,以爱钱进为例,主要分成三个部门:政策和数据分析部、风控审核部、催收部。 政策和数据分析部下面分成三个主要部分:一是政策制定团队,包括确定目标人群、设计借款产品准入政策、核批政策、反欺诈政策、催收政策等,并固化到决策引擎系统和评分卡;二是数据挖掘分析,对逾期客户进行特征分析、产品盈利分析等;三是数据建模团队,根据数据挖掘,对逾期客户特征数据进行建模分析。政策和数据分析部的三个部门工作相互关联,工作成果是制定贷款产品政策,包括前端营销、中台审核、后台催收的各项政策制度。 风控审核部主要包括初审部、终审部和稽核部,主要职责是审核判定借款人资料的真实性和有效性,结合决策引擎和评分卡等对客户做出是否核批的决定。催收部按照客户逾期时间长短,分为初催和高催,主要职责是根据催收评分卡和决策引擎,对逾期客户进行催收工作。2小额分散原则 有了职能清晰的风控部门,对于以点对点借款为主要模式的P2P而言,要控制平台整体违约率在较低水准,还要坚持“小额分散”的原则。 先说一下“分散”在风险控制方面的好处,即借款的客户分散在不同的地域、行业、年龄和学历等,这些分散独立的个体之间违约的概率能够相互保持独立性,那么同时违约的概率就会非常小。比如100个独立个人的违约概率都是20%,那么随机挑选出其中2人同时违约的概率为4%(20%^2),3个人同时违约的概率为0.8%(20%^3),四个人都发生违约的概率为0.016%(20%^4)。如果这100个人的违约存在相关性,比如在A违约的时候B也会违约的概率是50%,那么随机挑出来这两个人的同时违约概率就会上升到10%(20%×50%=10%,而不是4%)。因此保持不同借款主体之间的独立性非常重要。 “小额”在风险控制上的重要性,则是避免统计学上的“小样本偏差”。例如,平台一共做10亿的借款,如果借款人平均每个借3万,就是3.3万个借款客户,如果借款单笔是1000万的话,就是100个客户。在统计学有“大数定律”法则,即需要在样本个数数量够大的情况下(超过几万个以后),才能越来越符合正态分布定律,统计学上才有意义。因此,如果借款人坏账率都是2%,则放款给3.3万个客户,其坏账率为2%的可能性要远高于仅放款给100个客户的可能性,并且这100个人坏账比较集中可能达到10%甚至更高,这就是统计学意义上的“小样本偏差”的风险。 对应到p2p网贷上,那些做单笔较大规模的借款的网站风险更大。这也是为什么包括人人贷、有利网以及爱钱进这些对风控要求较高的平台,坚决不做抵押类大额借款的原因。3数据化风控模型 除了坚持小额分散借款原则,用数据分析方式建立风控模型和决策引擎同样重要。小额分散最直接的体现就是借款客户数量众多,如果采用银行传统的信审模式,在还款能力、还款意愿等难以统一量度的违约风险判断中,风控成本会高至业务模式难以承受的水平,这也是很多P2P网贷平台铤而走险做大额借款的原因。 可以借鉴的是,国外成熟的P2P比如LendingClub,以及都是采用信贷工厂的模式,利用风险模型的指引建立审批的决策引擎和评分卡体系,根据客户的行为特征等各方面数据来判断借款客户的违约风险。美国的专门从事信用小微贷业务的Capital One是最早利用大数据分析来判断个人借款还款概率的公司,在金融海啸中,Capital One公司也凭借其数据化风控能力得以

文档评论(0)

cgtk187 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档