数据分析对于用户研究的重要性分析.docx

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据分析对于用户研究的重要性分析

数据分析对于用户研究的重要性分析无论是产品经理、设计师、工程师,大家都是为用户服务的。用户各有所好。你喜欢这个,我喜欢那个,也有我们都喜欢的。那么在用户的心理隐藏着什么样的秘密呢?要想发现其中的奥妙,通常有两种方式:定性研究、定量分析。定性的信息告诉你为什么会发生,它灵活、快速、细节丰富,但缺乏普遍性,我们能听到的只能是少部分用户的声音,他们是否代表大多数用户是无从判断的。另一种方法就是让数据来说话,定量的信息告诉你发生了什么,它真实、精确。也就是说,用户研究并不一定总要使用“定性研究”这样的方式才能进行。借助数据分析也可以达到了解用户喜好的效果。一、“数据分析”在“用户研究”中的作用“数据分析”如何作用于“用户研究”呢?(1)了解用户概况了解目标用户“背景信息”:通过数据统计目标用户“人口统计”信息,比如,年龄构成、性别比例、等等(如下图),达到对目标用户背景情况摸底效果?/experience//1317102509.jpg?sign=MBO:xSCczKp2MjuZ:GbdDflia3oUWwQyXtvqvdPbRTuo=(2)?区分用户群体差异按照多种维度,发现用户不同特征,将相同特征用户归类,进而准确形成用户分组,为之后进一步用户分析工作在此基础上进行,为产品优化设计工作指明用户群体的方向(如下图)(3)?分析用户偏好以调研的产品为核心,按照多种维度统计“频次”、“含量占比”,从而挖掘目标用户各种“偏好”,让“产品优化设计”能够迎合用户需求,有的放矢:如下图一,产品使用地点排行,挖掘用户对地点的偏好;如下图二,产品分类排行,挖掘用户对产品分类的偏好二、??用户研究中的“数据分析”方法收集用户数据-制定编码分类-数据分析(用户特征提取)-确定优化方向-提升商业回报,下面进行简要介绍(1)制定编码分类抽取近几周到几个月内的数据,根据分析的产品目标建立编码规则,执行编码,直到不再产生新的编码为止。编码可以是任何维度上的,只要对后续的分析有帮助(2)数据分析(用户特征提取)编码建立之后,围绕研究“目标产品”用户特征这个中心,按照各种有用的维度进行数据统计,通过数据分析结果,分析提取出“用户特征”(3)确定优化方向在分析出来的众多“用户特征”中,根据商业目标和用户体验双方向共赢的原则,寻找产品优化设计的方向?三、??为“数据分析”穿上美丽的外衣(1)?数据说明“图形化”,让分析结果更易理解给统计图表增加“图形化数据说明”,可以更直接快速的传达结论,更易于读者理解,如下方的两张图,分别给横轴的“性别”、“年龄”、“峰值原因说明”增加了形象的图形说明(2)数据分析图,要能直观的反应结论统计图表中,在说明不同类别占比或者频次有差异的时候,图形本身尺寸大小建议和所反馈的占比频次成正比,以便读者观看分析报告时候,一目了然,快速理解图表含义,比如下方图形,“YES类”占比多所以“图形面积”大;“NO类”占比少,所以“图形面积”小最后,“数据分析”需要与“定性研究”相结合,才能发现规律并且追根溯源,更高效的指导设计和产品。

文档评论(0)

cgtk187 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档