网站大量收购独家精品文档,联系QQ:2885784924

影像卷积与滤波运算.doc

  1. 1、本文档共26页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
影像卷积与滤波运算

影像卷积和滤波运算(高斯滤波模板) 引用:/s/blog_4b700c4c0102e02s.html 高斯函数在图像增强中起到什么作用,麻烦具体点,就比如傅立叶变化在图像增强中可以有去除噪声的作用 主要是平滑图像~~~ 高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷. (5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.     什么叫滤波:用白话讲就是,一个电信号中有若干种成分,把其中一部分交流信号过滤掉就叫滤波。 卷积和滤波的区别:在数字信号处理的理论中,卷给可以说是一种数学运算,而滤波是一种信号处理的方法。卷积就像加权乘法一样,你能说滤波和加权乘法是一样的吗,显然不行;但是滤波最终是有乘法来实现的。 自适应滤波就是滤波所用的模板系数会根据图像不同位置自动调整。 中值滤波(median filter)简单的说就是:一个窗(window)中心的象素值就是这个窗包含的象素中处于中间位置的象素值。 均值滤波(mean filter)就是一个窗中心的象素值就是这个窗包含的象素的平均值。 空间频率主要是指图像的平滑或粗糙程度。一般可认为,高空间频率区域称“粗糙”,即图像的亮度值在小范围内变化很大,而“平滑”区,图像的亮度值变化相对较小,如平滑的水体表面等。低通滤波主要用于加强图像中的低频成分,减弱高频成分,而高通滤波则正好相反,加强高频细节,减弱低频细节,简单地讲:高通滤波处理过的图像更加“粗糙”。高通滤波顾名思义就是让频率高的通过,使图像具有锐化效果;低通滤波则恰好相反了,它是使低频通过,使图像具有平滑的效果。 ?模板的定义 –所谓模板就是一个系数矩阵 –模板大小:经常是奇数,如: 3x3   5x5   7x7 –模板系数: 矩阵的元素 w1 w2 w3 w4 w5 w6 w7 w8 w9 空域过滤及过滤器的定义:使用空域模板进行的图像处理,被称为空域过滤。 w1 w2 w3 w4 w5 w6 w7 w8 w9 模板本身被称为空域过滤器 空域过滤器的分类 按效果分:钝化过滤器,锐化过滤器 按数学形态分类 1,线性过滤器:使用乘积和的计算,例如:R = w1z1 + w2z2 + … + wnzn 高通:边缘增强、边缘提取 低通:钝化图像、去除噪音 带通:删除特定频率、增强中很少用 2,非线性过滤器:结果值直接取决于像素邻域的值 最大值:寻找最亮点,亮化图片 最小值:寻找最暗点,暗化图片 中值:钝化图像、去除噪音 钝化过滤器的主要用途 1,对大图像处理前,删去无用的细小细节 2,连接中断的线段和曲线 3,降低噪音 4,钝化处理,恢复过分锐化的图像 5,图像创艺(阴影、软边、朦胧效果) 缺点: 如果图像处理的目的是去除噪音,那么,低通滤波在去除噪音的同时也钝化了边和尖锐的细节,但是中值滤波算法的特点:在去除噪音的同时,可以比较好地保留边的锐度和图像的细节锐化过滤器的主要用途 1,印刷中的细微层次强调。弥补扫描、挂网对图像的钝化 2,超声探测成象,分辨率低

文档评论(0)

3471161553 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档