- 1、本文档共13页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
专长领域功能性磁振造影(FMRI)课件
Functional Imaging Laboratory (FIL) * Some Terminologies x: input features Eg. x =[ weight, height, waist line, chest circumference, age], x=[Brain volume in different regions (region1, region2….region n)] Dimensionality : number of features in x Eg. x =[ weight, height, age] The dimension is 3 f(x,θ) x y y : output, it can be a continuous value or a discrete value (classes). Eg. continuouse values: y =[age(12)], Eg, classes: y=[‘male’], y=[‘female’] F(x, θ) : The Model which estimates the output y form the given input x features with model parameters θ. Examples of simple model f(x, θ) Gaussian Model 2 parameters (mean and standard deviation) Linear Model 2 parameters (gradient and offset) x1(feature1) X2(feature2) Two sets of data x1(feature1) X2(feature2) Class 1 Class 2 x1(feature1) X2(feature2) Gaussian Model Class 1 Class 2 x1(feature1) X2(feature2) Class 1 Class 2 Linear Discriminative function x1(feature1) X2(feature2) But there are many possible separating lines x1(feature1) X2(feature2) Maximizing the margin γ Support Vector Machine Separating line x1(feature1) X2(feature2) Maximizing the margin γ Support Vector Machine Suppor vector Suppor vectors Separating line 12 Queen Square, St. John’s House About 60 Researchers around the globe Different Groups MR Physics Analysis Methods (where I belong to) Language Emotion. Etc… Primary Supervisor Dr.John Ashburner 職稱??Honorary Senior Lecturer 單位??The Wellcome Department of Imaging Neuroscience 專長領域??功能性磁振造影(fMRI)、神經解剖運算模型(computational Neuroamatomy) Quoted from 第一屆台灣地區認知神經科學暑期學校 Ashburner 博士目前任職於英國的 FIL,是在腦訊號處理方法學及物理學方面的主要研究員,主要專長是計算神經解剖學。由於我們由腦造影工具所獲得的影像需要倚賴一套適當的運算模型,來調整個別受試者的腦部不同形狀大小以獲得具代表性的空間訊號,才能作進一步的訊號比較,而 FIL 能夠在腦訊號處理科學界不但是開路先驅更於現在位居龍頭,Ashburner 博士所奠定的基礎功不可沒。 Secondary Supervisor: Professor Karl Friston Position: Director of Functional Imaging Laboratory Founders of SPM software package Fellow of the Royal Society Quoted from The Royal Society Professor Friston is Professor of Neurosci
文档评论(0)