Hierarchical Lookahead Agents A Preliminary Report分层超前剂初步报告.ppt

Hierarchical Lookahead Agents A Preliminary Report分层超前剂初步报告.ppt

  1. 1、本文档共28页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Hierarchical Lookahead Agents A Preliminary Report分层超前剂初步报告

Hierarchical Lookahead Agents: A Preliminary Report Bhaskara Marthi Stuart Russell Jason Wolfe High-level actions For our purposes, a high-level action (HLA) Has a set of possible immediate refinements into sequences of actions, primitive or high-level Each refinement may have a precondition on its use Many of the actions we do are high-level Go to work Write a NIPS paper This definition generalizes others we’ve seen Options don’t provide a choice of refinements MAXQ tasks can’t represent sequencing constraints Abstract Lookahead k-step lookahead 1-step lookahead e.g., chess k-step lookahead no use if steps are too small e.g., first k characters of a NIPS paper this is one small part of a human life, = ~20,000,000,000,000 primitive actions Angelic semantics for HLAs Models HLAs in deterministic domains without rewards Central idea is reachable set of an HLA from some state When extended to sequences of actions, allows proving that a plan can or cannot possibly reach the goal May seem related to nondeterminism But the nondeterminism is angelic: the “uncertainty” will be resolved by the agent, not an adversary or nature Contributions Extended angelic semantics to account for rewards Developed novel algorithms that do lookahead Hierarchical Forward Search An optimal, offline algorithm Can prove optimality of plans entirely at high level Hierarchical Real-Time Search An online algorithm Requires only bounded computation per time step Significantly outperforms previous ``flat’’ lookahead algorithms Both algorithms require three inputs: a deterministic MDP model an action hierarchy (HLAs) models for HLAs (based on angelic semantics) Deterministic MDPs A deterministic MDP consists of: State space S Initial state s0 2 S, (w.l.o.g.) single terminal state t ? S Primitive action set A Transition function f : S x A ! S Reward function r : S x A ! R Undiscounted, assume no non-negative-reward cycles Example – Warehouse World Has similarities to blocks and taxi domains

您可能关注的文档

文档评论(0)

bokegood + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档