外文翻译整体经验模式分解改进.docxVIP

  1. 1、本文档共22页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
外文翻译整体经验模式分解改进

附 录 附录A 外文资料翻译 Machanical Systerms and Signal Processing 13 (2010) Performance enhancement of ensemble empirical mode decomposition Abstract Ensemble empirical mode decomposition (EEMD) is a newly developed method aimed at eliminating mode mixing present in the original empirical mode decomposition (EMD). To evaluate the performance of this new method, this paper investigates the effect of two parameters pertinent to EEMD: the amplitude of added white noise and the number of ensemble trials. A test signal with mode mixing that mimics realistic bearing vibration signals measured on a bearing test bed was developed to enable quantitative evaluation of the EEMD and provide guidance on how to choose the two parameters appropriately for bearing signal decomposition. Subsequently, a modified EEMD (MEEMD) method is proposed to reduce the computational cost of the original EEMD method as well as improving its performance. Numerical evaluation and systematic study using vibration data measured on an experimental bearing test bed verified the effectiveness and computational efficiency of the proposed MEEMD method for bearing defect diagnosis. 1. Introduction In recent years, time–frequency and time-scale analysis techniques such as short time Fourier transform (STFT) [1] and wavelet transform [2, 3] have been increasingly investigated for non-stationary and/or nonlinear signal processing in machine health diagnosis. These techniques, while having shown to be successful in various applications, are non-adaptive in nature. As a result, once the window type or a base wavelet has been chosen, the analysis function remains the same during the subsequent signal decomposition process. In comparison, the Hilbert–Huang transform (HHT) [4,5] decomposes a signal into a set of intrinsic mode functions (IMFs) through the empirical mode decomposition (EMD) process, thus only involving the signal being analyzed itself instead of requiring an analysis function to be convoluted with. As a

您可能关注的文档

文档评论(0)

bokegood + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档