- 1、本文档共101页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第5章 神经网络和神经网络控制
机电系统智能控制 推荐课后阅读资料 Simon Haykin.神经网络的综合基础(第2版). 清华大学出版社,2001 Martin T.Hagan.神经网络设计.机械工业出版社,2002 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 5.4.1 基于BP神经网络控制参数自学习PID控制 BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。通过神经网络自身的学习,可以找到某一最优控制律下的P,I,D参数。基于BP神经网络的PID控制系统结构如图所示,控制器由两个部分组成:①经典的PID控制器:直接对被控对象进行闭环控制,并且KP,KI,KD三个参数为在线整定;②神经网络NN:根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化。即使输出层神经元的输出状态对应于PID控制器的三个可调参数KP,KI,KD,通过神经网络的自学习、调整权系数,从而使其稳定状态对应于某种最优控制律下的PID控制器参数。 * * 基于BP神经网络的PID控制算法可归纳如下: 1). 事先选定BP神经网络NN的结构,即选定输入层节点数M和隐含层节点数Q,并给出权系数的初值w(2)ij(0), w(3)li(0),选定学习速率η和平滑因子α,k=1; 2). 采样得到r(k)和y(k),计算e(k)=z(k)=r(k)-y(k); 3). 对r(i),y(i),u(i-1),e(i)进行归一化处理,作为NN的输入; 4). 前向计算NN的各层神经元的输入和输出,NN输出层的输出即为PID控制器的三个可调参数KP(k),KI(k),KD(k); 5). 计算PID控制器的控制输出u(k),参与控制和计算; 6). 计算修正输出层的权系数w(3)li(k); 7). 计算修正隐含层的权系数w(2)ij(k); 8). 置k=k+1,返回到“2)”。 * 5.4.2 改进型BP神经网络控制参数自学习PID控制 将神经网络用于控制器的设计或直接学习计算控制器的输出(控制量),一般都要用到系统的预测输出值或其变化量来计算权系数的修正量。但实际上,系统的预测输出值是不易直接测得的,通常的做法是建立被控对象的预测数学模型,用该模型所计算的预测输出来取代预测处的实测值,以提高控制效果。 * (1)采用线性预测模型的BP神经网络PID控制器 * 采用线性预测模型的BP神经网络PID控制系统算法如下: 1). 事先选定BP神经网络NN的结构,即选定输入层节点数M和隐含层节点数Q,并给出权系数的初值w(2)ij(0), w(3)li(0),选定学习速率η和平滑因子α,k=1; 2). 用线性系统辨识法估计出参数矢量θ(k),从而形成一步预报模型式; 3). 采样得到r(k)和y(k),计算e(k)=z(k)=r(k)-y(k); 4). 对r(i),y(i),u(i-1),e(i)进行归一化处理,作为NN的输入; 5). 前向计算NN的各层神经元的输入和输出,NN输出层的输出即为PID控制器的三个可调参数KP(k),KI(k),KD(k); 6). 计算PID控制器的控制输出u(k),参与控制和计算; 7). 计算 和 ; 8). 计算修正输出层的权系数w(3)li(k); 9). 计算修正隐含层的权系数w(2)ij(k); 10). 置k=k+1,返回到“2)”。 * 采用线性预测模型的BP神经网络PID控制系统算法如下: * (2)采用非线性预测模型的BP神经网络PID控制器 * 基于BP神经网络的PID控制算法可归纳如下: 1). 事先选定BP神经网络NN的结构,即选定输入层节点数M和隐含层节点数Q,并给出权系数的初值w(2)ij(0), w(3)li(0),选定学习速率η和平滑因子α,k=1; 2). 采样得到r(k)和y(k),计算e(k)=z(k)=r(k)-y(k); 3). 对r(i),y(i),u(i-1),e(i)进行归一化处理,作为NN的输入; 4). 前向计算NN的各层神经元的输入和输出,NN输出层
文档评论(0)