- 1、本文档共40页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
A Two-Stage Approach to Domain Adaptation for Statistical 统计域的适应一二个阶段的方法
Nov 7, 2007 CIKM2007 A Two-Stage Approach to Domain Adaptation for Statistical Classifiers Jing Jiang ChengXiang Zhai Department of Computer Science University of Illinois at Urbana-Champaign What is domain adaptation? Example: named entity recognition Example: named entity recognition Domain difference ? performance drop Another NER example Other examples Spam filtering: Public email collection ? personal inboxes Sentiment analysis of product reviews Digital cameras ? cell phones Movies ? books Can we do better than standard supervised learning? Domain adaptation: to design learning methods that are aware of the training and test domain difference. How do we solve the problem in general? Observation 1 Observation 1 Observation 2 Observation 2 General idea: two-stage approach Goal Regular classification Generalization: to emphasize generalizable features in the trained model Adaptation: to pick up domain-specific features for the target domain Regular semi-supervised learning Comparison with related work We explicitly model generalizable features. Previous work models it implicitly [Blitzer et al. 2006, Ben-David et al. 2007, Daumé III 2007]. We do not need labeled target data but we need multiple source (training) domains. Some work requires labeled target data [Daumé III 2007]. We have a 2nd stage of adaptation, which uses semi-supervised learning. Previous work does not incorporate semi-supervised learning [Blitzer et al. 2006, Ben-David et al. 2007, Daumé III 2007]. Implementation of the two-stage approach with logistic regression classifiers Logistic regression classifiers Learning a logistic regression classifier Generalizable features in weight vectors We want to decompose w in this way Feature selection matrix A Decomposition of w Decomposition of w Decomposition of w Framework for generalization Framework for adaptation How to find A? (1) Joint optimization Alternating optimization How to find A? (2) Domain cross validation Idea: training on (K – 1
您可能关注的文档
- 2016聚焦中考生物习题课件专题6 动物的主要类群、em.ppt
- 2016聚焦中考生物习题课件第18讲 动物的运动和行为.ppt
- 2016部编本拼音d t n l.ppt
- 2016社区生鲜电商o2o平台商业模式及020营销策略.ppt
- 2016部编本12an en in un un(动画版).ppt
- 2016里约热内卢奥运会_运动攻略_运动知识_运动信息攻略.ppt
- 2016计算机三级网络技术上机考试题及答案(100套).ppt
- 2016颖文化创新的途径--G20峰会.ppt
- 2017-2018年度健康产业公司人事部门年终工作总结汇报(.ppt
- 2017-2018年度健康产业公司市场部年终工作总结汇报动态.ppt
最近下载
- 七年级道德与法治下册课件.docx
- ISO-22163-2023标准中英文版.docx VIP
- 中华民族共同体概论讲稿专家版《中华民族共同体概论》大讲堂(第一讲-第十六讲)附《中华民族共同体概论》课程大纲.doc VIP
- 08-103_GZL6_CASCO_344_司机界面(DMI)描述.pdf
- 《船舶信号系统实训》课件——机舱监测报警系统报警点调试.pptx VIP
- Eques移康智能猫眼T1说明书.pdf
- 律师服务团队分工方案.docx
- 《船舶信号系统实训》课件——机舱监测报警系统的组成及功能认知.pptx VIP
- 全能值班员试题库(流化床).pdf VIP
- 青春变形记介绍.pptx VIP
文档评论(0)