网站大量收购闲置独家精品文档,联系QQ:2885784924

A Two-Stage Approach to Domain Adaptation for Statistical 统计域的适应一二个阶段的方法.ppt

A Two-Stage Approach to Domain Adaptation for Statistical 统计域的适应一二个阶段的方法.ppt

  1. 1、本文档共40页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
A Two-Stage Approach to Domain Adaptation for Statistical 统计域的适应一二个阶段的方法

Nov 7, 2007 CIKM2007 A Two-Stage Approach to Domain Adaptation for Statistical Classifiers Jing Jiang ChengXiang Zhai Department of Computer Science University of Illinois at Urbana-Champaign What is domain adaptation? Example: named entity recognition Example: named entity recognition Domain difference ? performance drop Another NER example Other examples Spam filtering: Public email collection ? personal inboxes Sentiment analysis of product reviews Digital cameras ? cell phones Movies ? books Can we do better than standard supervised learning? Domain adaptation: to design learning methods that are aware of the training and test domain difference. How do we solve the problem in general? Observation 1 Observation 1 Observation 2 Observation 2 General idea: two-stage approach Goal Regular classification Generalization: to emphasize generalizable features in the trained model Adaptation: to pick up domain-specific features for the target domain Regular semi-supervised learning Comparison with related work We explicitly model generalizable features. Previous work models it implicitly [Blitzer et al. 2006, Ben-David et al. 2007, Daumé III 2007]. We do not need labeled target data but we need multiple source (training) domains. Some work requires labeled target data [Daumé III 2007]. We have a 2nd stage of adaptation, which uses semi-supervised learning. Previous work does not incorporate semi-supervised learning [Blitzer et al. 2006, Ben-David et al. 2007, Daumé III 2007]. Implementation of the two-stage approach with logistic regression classifiers Logistic regression classifiers Learning a logistic regression classifier Generalizable features in weight vectors We want to decompose w in this way Feature selection matrix A Decomposition of w Decomposition of w Decomposition of w Framework for generalization Framework for adaptation How to find A? (1) Joint optimization Alternating optimization How to find A? (2) Domain cross validation Idea: training on (K – 1

文档评论(0)

wuyoujun92 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档