模型评估和方法.pptx

  1. 1、本文档共23页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第2章 模型评估与选择2.1 经验误差与过拟合2.2 评估方法2.3 性能度量2.4 比较检验2.5 偏差与方差2.1 经验误差与过拟合经验误差 VS 泛化误差过拟合 VS 欠拟合2.2 评估方法2.2.1、留出法(hold-out)直接将数据集D划分为两个互斥的集合。2.2.2交叉验证法(cross validation)将数据集D划分为K个大小相似的互斥子集,每次用K-1个子集的并集作为训练集,余下的子集作为测试集。缺点比较:我们希望评估的是用D训练的模型。但在留出法和交叉验证法中,由于保留了一部分样本用于测试,因此实际评估的模型所使用的训练集比D小,这必然会引入一些因训练样本规模不同而导致的估计偏差。2.2.3 自助法 “自助法”是针对上述缺点的一个比较好的解决方案,它直接以自助采样法为基础。给定包含m个样本的数据集D,我们对它进行采样产生数据集D’:每次随机从D中挑选一个样本,将其拷贝放入D’,然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被采到;这个过程重复执行m次后,我们就得到了包含m个样本的数据集D’,这就是自助采样的结果。于是我们可将D’用作训练集,D\D’用作测试集;这样,实际评估的模型与期望评估的模型都使用m个训练样本,而我们仍有数据总量约1/3的、没在训练集中出现的样本用于测试。2.2.4 调参与最终模型 现实中常见的做法,是对每个参数选择一个范围和变化步长,例如在[0,0.2]范围内以0.05为步长,则实际要评估的候选参数值是5个,最终从这5个值中产生选定值。2.3 性能度量衡量模型泛化能力的评价标准2.3.1 错误率与精度错误率是分类错误的样本数占样本总数的比例精度是分类正确的样本数占样本总数的比例?2.3.2 查准率、查全率与F1对于二分类问题中,可将样例根据真实类别与学习器预测类型的组合划分为真正例、假正例、真反例、假反例四种情形。P= R=真实情况预测结果正例反例正例TP(真正例)FN(假反例)反例FP(假正例)TN(真反例)“平衡点”(Break-Event Point,简称BEP),就是查准率与查全率时的取值。?但BEP还是过于简化了些,更常用的是F1度量 P= F1是基于查准率与查全率的调和平均(harmonic mean):2.3.3 ROC和AUC 根据实值或概率预测结果,我们可以将测试样本进行排序,“最可能”是正例的排在前面“最不可能”是正例的排在最后面。分类过程相当于在这个排序中以某个“截断点”将样本分为两个部分,前一部分判做正例,后一部分则判作反例。在不同的应用任务中,我们可根据任务需求来采用不同的截断点。 排序本身质量的好坏,体现了综合考虑学习器在不同任务下的“期望泛化性能”的好坏,或者说“一般情况下”泛化性能的好坏。ROC曲线则是从排序本身质量的好坏的角度来研究学习器泛化性能。ROC全名“受试者工作特征”曲线,以“真正例率”为纵轴,以“假正例率”为横轴。真正例率TPR:真正例样本数/真实情况是正例的样本数(查全率)假正例率FPR:假正例样本数/真实情况是是反例的样本数基于ROC曲线的学习器性能评价规则1. 当曲线没有交叉的时候:外侧曲线的学习器性能优于内侧;2. 当曲线有交叉的时候:比较ROC曲线下的面积即 AUC (Area Under ROC Curve)2.3.4 代价敏感错误率与代价曲线 在现实任务汇总常会遇到这样的情况:不同类型的错误所造成的后果不同。为权衡不同类型错误所造成的的不同损失,可为错误赋予“非均等代价”(unequal cost)。如下图所示,正确判断的代价显然应该为0,错误判断的代价之间的比值会影响我们对学习器的改造。?可令cost ij为把i类样本错判为j类样本的代价,对所有类型错误的数量与其错误代价的乘积求和,再除以样本总数量,就得到代价敏感(cost-sensitive)错误率。在非均等代价下,ROC曲线不能直接反映出学习器的期望总体代价,而“代价曲线”则可以达到目的。代价曲线的横轴是正例概率代价P(+)cost,纵轴是归一化代价cost —normp是样例为正例的概率FPR是假正例率,FNR = 1 - TPR2.4 比较检验2.4.1假设检验 假设检验的基本思想是小概率反证法思想。小概率思想是指小概率事件(P0.01或P0.05)在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为不假设成立。 2.4.2 交叉验证t检验 基本思想:若两个学习器的性能相同,则使用相同的训练/测试集得到的测试错误率应相同。假设检验的前提:测试错误率均为泛化错误率的独立采样。k折交叉验证产生的K对测试错误率:先对每对结果求

文档评论(0)

js1180 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档