基于小波变换的车牌识别系统设计与实现.docx

基于小波变换的车牌识别系统设计与实现.docx

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于小波变换的车牌识别系统设计与实现

基于小波变换的车牌识别系统设计与实现1.前言机动车闯红灯是日常交通管理中常见的交通违章现象,不仅扰乱了正常的交通秩序,也是造成机动车交通事故的主要原因之一。“电子警察”就是针对机动车路口闯红灯这种极易造成恶性事故的交通违章现象进行自动监测记录,做到了无人值守,不间断监测,证据充分正确。 车 牌识别技术(Vehicle License Plate Recognition,VLPR)是计算机视觉和模式识别技术在现代智能交通系统中的一项重要研究课题,是实现交通管理智能化的重要环节。它是以数字图 像处理、模式识别、计算机视觉等技术为基础的智能识别系统,它利用每一个汽车都有唯一的车牌号码,通过摄像机所拍摄的车辆图像进行车牌号码的识别。在不影 响汽车状态的情况下,计算机自动完成车牌的识别,从而可降低交通管理工作复杂度。车牌自动识别技术在车辆过路、过桥全自动不停车收费,交通流量控制指标的 测量,车辆自动识别,高速公路上的事故自动测报,不停车检查,车辆定位,汽车防盗,稽查和追踪车辆违规、违法行为,维护交通安全和城市治安,防止交通堵 塞,提高收费路桥的服务速度,缓解交通紧张状况等方面将会起到积极的作用。 针对以往车牌识别算法的缺点和不足,例如识别率低、识别速度慢、车牌定位不准确等,本文提出了一种新的基于小波分析的改进车牌定位算法,同时将引入动量因子的BP神经网络应用到字符识别,加快了网络的训练过程。 2 基于小波变换和神经网络的车牌识别技术总体设计 2.1? 车牌定位算法的基本思路 在某一个相位的红灯周期内,如果检测到有车辆通过,触发视频采集模块采集前端摄像机传送来的视频流,进行图像采集,采集到的图像是24位的真彩色图像,首先 将图像进行灰度变换,转换为256色的灰度图。在车牌区域的局部图像内,字符笔画与车牌背景间的亮度反差形成明显而密集的边缘,上升缘与下降缘交替出现。 利用车牌区域的这一高频特征,采用小波分析的多分辨率思想,进行水平方向上的小波变换,小波变换后的高频部分可以突出车牌区域,后继处理只需要对高频图像 进行变换,即可定位出车牌。采用这种方法可以将运算量减少一半,大大缩短了车牌定位的时间。 接下来,利用局部阈值方法,将高频图像部分二值化。此 时的图像可能含有一些干扰信息,因此要先对其进行中值滤波,以消除一些不必要的噪声。考虑到数学形态学的腐蚀和膨胀运算可以分别起到突出轮廓和填充空洞的 作用,因此利用数学形态学的闭运算来突出车牌的轮廓和消除孤立的部分。然后根据对车牌的先验知识(例如长宽比在一定范围内等)提取车牌的候选区。最后,将 车牌候选区域变换到HSI色彩空间,通过判断背景的颜色来确定准确的车牌区域。该算法的流程图表示见图1:图1???? 车牌定位算法2.2? 字符识别算法的基本思路首先,将已经确定的车牌区域变换成 灰度图。利用中值滤波进行预处理,然后利用中值滤波消除牌照上的污点,利用HOUGH变换对车牌进行倾斜度矫正。接着采用自适应阈值法,将图像二值化。利 用竖直方向的投影具有波峰、波谷间隔出现的特性,将字符进行分割。最后,将分割的字符大小归一化后,送入改进的BP神经网络进行字符识别。改进的BP神经 网络采用了动量因子,实验表明采用该方法大大缩短了网络的训练时间。字符识别流程图如图2所示:图2???? 字符识别算法3?车牌定位中小波变换的运用本方案使用Mallat一维分解算法实现图像的小波分解。假设2j=W,即现在的图像分辨率为j,则待变换的图像表示为fj(n),则离散函数fj(n)的小波分解为:fj(n)=wj-1-fj-1?其中,?,?,?,?。上式的分解中,Wj-1代表了图像的变化比较明显的部分,即图像的高频部分。而fj(n)代表图像所包含的基本信息,即图像的低频部分。将图像分解为低频和高频部分后,车牌字符、边缘等变化比较明显的部分就包含在一维小波分解后的高频图像部分中了。水平方向小波分解的程序流程图见图3所示。 图3???? 小波变换流程图图4为图像的一维水平和竖直方向上的小波变换(增加对比度后的效果)。图4?小波变换由图4可以得出,小波变换低频系数图像保持了原图像轮廓的主要信息,而高频图像反应了原图在不同方向上的细节信息。 分析小波高频图 像二值化后的水平投影图可以得到:尖峰的宽度即为车牌上下方向的大致坐标。从竖直投影图可以看出,变化平缓的部分为车牌左右方向的大致坐标。但图像中存在 的噪声对准确识别车牌位置仍然有很大的干扰,但干扰噪声明显比采用边缘检测算法要少的多,更重要的是只需要对高频图像进行检测,运算时间缩减了一半,只需 要扫描半幅图像。4?字符识别中改进BP神经网络的运用 4.1? 字符识别总体设计 车牌的第一个字符为汉字,第二为英文字母,第三个字符为英文或阿拉伯数字

文档评论(0)

almm118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档