多元线性回归的计算模型.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
多元线性回归的计算模型

多元线性回归的计算模型[1]   一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。   设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:      其中,b0为常数项,为回归系数,b1为固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:      其中,b0为常数项,为回归系数,b1为固定时,x2每增加一个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:   y = b0 + b1x1 + b2x2 + e   建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:   (1)自变量对因变量必须有显著的影响,并呈密切的线性相关;   (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;   (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度;   (4)自变量应具有完整的统计数据,其预测值容易确定。   多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为      解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得      即    [编辑] 多元线性回归模型的检验[1]   多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。   1、拟合程度的测定。   与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动(回归平方和)所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切。计算公式为:         其中,         2.估计标准误差   估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程。         其中,k为多元线性回归方程中的自变量的个数。   3.回归方程的显著性检验   回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切。能常采用F检验,F统计量的计算公式为:         根据给定的显著水平a,自由度(k,n-k-1)查F分布表,得到相应的临界值Fa,若F Fa,则回归方程具有显著意义,回归效果显著;F Fa,则回归方程无显著意义,回归效果不显著。   4.回归系数的显著性检验   在一元线性回归中,回归系数显著性检验(t检验)与回归方程的显著性检验(F检验)是等价的,但在多元线性回归中,这个等价不成立。t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素。检验时先计算统计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或ta / 2,t t ? a或ta / 2,则回归系数bi与0有显著关异,反之,则与0无显著差异。统计量t的计算公式为:      其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵(xx) ? 1的主对角线上的第j个元素。对二元线性回归而言,可用下列公式计算:         其中,               5.多重共线性判别   若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显著所致,此时,应从回归模型中剔除这个自变量,重新建立更为简单的回归模型或更换自变量。也可能是自变量之间有共线性所致,此时应设法降低共线性的影响。   多重共线性是指在多元线性回归方程中,自变量之彰有较强的线性关系,这种关系若超过了因变量与自变量的线性关系,则回归模型的稳定性受到破坏,回归系数估计不准确。需要指出的是,在多元回归模型中,多重共线性的难以避免的,只要多重共线性不太严重就行了。判别多元线性回归方程是否存在严惩的多重共线性,可分别计算每两个自变量之间的可决系数r2,若r2 R2或接近

文档评论(0)

almm118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档