第一节方差分析原理1.docVIP

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第一节方差分析原理1

第一节 方差分析原理一、方差分析基本思想   方差分析(analysis of variance,或缩写ANOVA)又称变异数分析,是一种应用非常广泛的统计方法。其主要功能是检验两个或多个样本平均数的差异是否有统计学意义,用以推断它们的总体均值是否相同。它是真正用来进行上述“多组比较”问题的正确方法,从这个意义上说,它可看成是t检验等“两组比较法”的推广。理解方差分析的原理,主要在于其基本思想,而不在于数学推导。   以单因素完全随机化实验设计为例(这是最简单的多组实验设计)介绍方差分析的原理。注意下面列出的该种设计的数学模式,假设有 k 个处理,每个处理下有 n 个被试,一共有 nk 个被试。K个处理下的数据构成比较中的k个组或k个样本。处理T1T2…Tj…Tk各组数据X11X21…Xi1…Xn1X12X22…Xi2…Xn2… ……………X1jX2j…Xij…Xnj… ……………X1kX2k…Xik…Xnk  不失一般地,其对应的图示如下:?  根据测量学中的真分数理论,观测值等于真值和误差之和;据此,对照上面的数据可得到下面的数学模型:  其中:  Xij? 指第 j 个处理下的第 i 个被试的实验数据;  μ??? 指总体均值;在图中样本数据中,即红色线表示的总平均;  μj?? 指第 j 个处理的均值;  τj?? 称为第 j 个处理的效应;通常,τj?=μj–μ,也即各组均值偏离总平均的离差;  εij? 为随机误差(idd表示误差独立同分布);在该模型中,误差就是各组中数据偏离其组均值的离差。因为根据单因素完全随机化设计的特点,同组中的被试,其各方面条件都相同,接受的处理也相同,其观测值间的差异只能归结为随机误差。  首先对检验的零假设进行变换:  下面我们就需要构造一个统计量使得它在Ho下无未知量且有精确的分布,以进行假设检验。由于τ2j是每个处理的平均数与总平均之差,所以我们考虑从数据的离均差的平方入手来构造统计量:  对每个观测数据:  即:任意一个数据与总平均数的离差 = 该数与所在组平均数的离差 + 所在组的平均数与总平均数的离差。  我们针对第 j 组中每个数据的上述分解式的平方求和得:  再对所有组求和得:  显然,上式左端的表达式就是将所有k个样本数据混在一起时所得总方差的分子部分,称总平方和,记为SSt(sum of square, total);右端第一式是在各组内计算得到的各组方差的分子部分,由于它度量的实际上是所有数据与其所在组均值的离差平方和,故称之为组内平方和,记为SSw(within group),根据上述的模型,它的含义也就是误差平方和;右端第二式度量的是各组的效应平方和,称组间平方和(之所以有n倍,是因为每组中的效应被重复累加了n次),记为SSb(between group)。  上式简记为:SSt = SSb + SSw。此公式是和上述单因素完全随机化设计的数学模型相对应的。接下来的问题实际上是利用F检验进行方差比检验,即比较组间变异(方差或均方)和组内变异的相对大小。因此,分别将上述平方和比各自的自由度得到组间方差(记为MSb)和组内方差(记为MSw或MSe)。方差分析假定各处理方差相等,则各处理样本的方差S21、S22,…,S2m都是处理总体方差σ2的无偏估计量。各处理方差合成后估计精度更高(下式)。同时,MSb也是σ2  直观地看,要检验的就是F值是否显著地大于1,若大于1,说明组间变异中尚存在随机误差之外的显著变异;否则说明组间变异和随机误差差不多,也即接受无差异零假设。  从上面的推导过程看到,方差分析实际上是将实验数据的总变异分解成若干个不同来源的分量(对于单因素完全随机化实验设计来说是分解成组间差异所引起的变异和组内误差所引起的变异),即将总的离均差平方和分解成几个不同来源的平方和,然后比较我们研究的那些因素所引起的变异与误差变异的显著性。其核心一是根据具体实验设计确定变异源分解模型;二是构造方差比进行F检验。?  二、方差分析的基本条件  进行方差分析时有一定的条件限制,数据必须满足以下几个基本假定:  总体正态性。要求样本必须来自正态分布总体,而总体是否服从正态分布可以采用卡方检验中的拟合性检验进行判断(参见第八章有关内容)。不过在心理与教育研究领域中,大多数变量是可以假定其总体服从正态分布的,因此一般在进行方差分析时并不需要去检验总体分布的正态性;而且研究表明数据正态性对于方差分析结果的影响不是太大。  方差齐性。在前面的推导过程中,将 MSw 作为总体组内方差的估计值,而计算 MSw 时相当于将各处理(组)方差合成,这种合成正如 T 检验一节所讲一样,显然要求一个前提就是各组的方差无显著的差异。方差齐性检验有许多方法,如教材介绍的哈特莱(Hartley)法、

文档评论(0)

haowendangqw + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档