深部开采岩体力学研究与其进展.pptVIP

  1. 1、本文档共63页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
4 深部开采工程岩体力学特性 4.1 深部工程岩体的地质力学特性 表1 深部岩体与浅部岩体的受力特点对比 非线性力学设计 不遵循 密切相关 耗散场 非线性 自重高地应力 深部岩体 遵循 无关 保守 线性 自重低地应力 浅部岩体 参数设计 遵循 无关 保守 线性 自重 地面建筑材料(砖) 工程设计方法 叠加原理 加载过程 能量场特点 力学特点 受力特点 材料 4.2 深部工程岩体的工程力学特性 浅部巷道围岩状态通常可分为松动区、塑性区和弹性区三个区域,其本构关系可以采用弹塑性力学理论进行推导求解。然而,研究表明,深部巷道围岩产生膨胀带和压缩带,或称为破裂区和未破坏区,交替出现的情形,且其宽度按等比数列递增,这一现象被称为区域破裂现象(据E. I. Shemyakin)。现场实测研究也证明了深部巷道围岩变形力学的拉压域复合特征。因此,深部巷道围岩的应力场更为复杂。 (1)围岩应力场的复杂性 4.2 深部工程岩体的工程力学特性 研究表明,进入深部后岩体变形具有两种完全不同的趋势,一种是岩体表现为持续的强流变特性,即不仅变形量大,而且具有明显的“时间效应”,如煤矿中有的巷道20余年底臌不止,累计底臌量达数十米。对南非金矿深部围岩的流变性进行了系统研究,发现其围岩流变性十分明显,巷道围岩最大移近速度达500 mm/月。另一种是岩体并没有发生明显变形,但十分破碎,处于破裂状态,按传统的岩体破坏、失稳的概念,这种岩体已不再具有承载特性,但事实上,它仍然具有承载和再次稳定的能力,借助这一特性,有些巷道还特地将其布置在破碎岩(煤)体中,如沿空掘巷。 (2)围岩的大变形和强流变性特性 4.2 深部工程岩体的工程力学特性 浅部岩体破坏通常表现为一个渐进过程,具有明显的破坏前兆(变形加剧)。而深部岩体的动力响应过程往往是突发的、无前兆的突变过程,具有强烈的冲击破坏特性,宏观表现为巷道顶板或周边围岩的大范围的突然失稳、坍塌。 (3)动力响应的突变性 4.2 深部工程岩体的工程力学特性 试验研究表明,岩石在不同围压条件下表现出不同的峰后特性,由此,最终破坏时应变值也不相同。在浅部(低围压)开采中,岩石破坏以脆性为主,通常没有或仅有少量的永久变形或塑性变形;而进入深部开采以后,因在“三高一扰动”作用下,岩石表现出的实际就是它的峰后强度特性,在高围压作用下岩石可能转化为延性,破坏时其永久变形量通常较大。因此,随着开采深度的增加,岩石已由浅部的脆性力学响应转化为深部潜在的延性力学响应行为。 (4)深部岩体的脆性——延性转化 4.2 深部工程岩体的工程力学特性 浅部资源开采中,矿井水主要来源是第四系含水层或地表水通过采动裂隙网络进入采场和巷道,水压小,渗水通道范围大,基本服从岩体等效连续介质渗流模型,涌水量也可根据岩体的渗透率张量进行定量估算,因此,突水预测预报尚具可行性。而深部的状况却十分特殊,首先,随着采深加大,承压水位高,水头压力大;其次,由于采掘扰动造成断层或裂隙活化,而形成渗流通道相对集中,矿井涌水通道范围窄,使奥陶系岩溶水对巷道围岩和顶底板形成严重的突水灾害。另外,突水往往发生在采掘活动结束后的一段时间内,具有明显的瞬时突发性和不可预测性。 (5)深部岩体开挖岩溶突水的瞬时性 5 深部开采工程灾害表现形式 有关统计资料表明,岩爆多发生在强度高、厚度大的坚硬岩(煤)层中,主要影响因素包括煤层顶底板条件、原岩应力、埋深、煤层物理力学特性、厚度及倾角等。目前的统计资料显示,尽管在极浅的硬煤层中(深度小于100 m,有的甚至在30~50 m)也有发生岩爆的记载,但总的来看,岩爆与采深有密切关系,即随着开采深度的增加,岩爆的发生次数、强度和规模也会随之上升。 (1)岩爆频率和强度均明显增加 5 深部开采工程灾害表现形式 随着采深的增加引起的覆岩自重压力的增大和构造应力的增强,表现为围岩发生剧烈变形、巷道和采场失稳、并易发生破坏性的冲击地压,给顶板管理带来许多困难。 (2)采场矿压显现剧烈 5 深部开采工程灾害表现形式 自1984年6月2日开滦矿务局范各庄矿发生井下岩溶陷落柱特大突水灾害以来,先后在淮北杨庄矿、义马新安矿、峰峰梧桐矿、皖北任楼矿、徐州张集矿又相继发生特大型奥灰岩岩溶突水淹井事故,初步估计,经济损失超过27亿元,同时产生了若干地质环境负效应。 (3)突水事故趋于严重 5 深部开采工程灾害表现形式 与浅部一样,深部巷道支护的目的仍是尽量保持围岩的完整性以及避免破碎岩体进一步产生位移。深部开采一方面自重应力逐渐增加,同时由于深部岩层的构造一般比较发育,其构造应力十分突出,致使巷道围岩压力大,巷道支护成本增加。据煤炭行业的有关资料,近10年巷道支护成本增加了1.4倍,巷道翻修量占整个巷道掘进量的40%。 (4)巷道围岩变形量大、

您可能关注的文档

文档评论(0)

nuvem + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档