- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于几何不变矩图像相似度计算方法
基于几何不变矩图像相似度计算方法
摘要
提出了一种图像相似度测量方法,实现了变电站环境下模板图像和巡检图像相似性的识别。首先,使用数字图像处理技术对采集的图像进行滤波、形态学等预处理。其次,计算并统计模板图像和巡检图像的几何不变矩Hu矩,形成图像的特征向量。最后,计算图像特征向量之间的余弦相似度,通过设置阈值进行图像相似程度识别。实验结果表明,该方法能够实现图像相似度之间的判断,算法简单、速度快、正确率高。为后续变电站异物识别提供了技术支持。
【关键词】变电站 图像相似度 Hu不变矩 余弦相似度
随着信息时代的到来,人类已经进入了信息化的时代,图像作为最普通的信息载体与人类的活动息息相关。近年来,众多的学者们将研究方向转移到图像处理与计算机视觉等领域。图像分类也逐渐成为科学研究中不可缺少的强有力的工具,其在图像检索、智能机器人场景识别等多个领域中具有重要的应用价值。
变电站是各级电网的核心枢纽,对站内设备例行检查是保证电网安全运行的关键技术手段。目前,比较流行的巡检方式是人工巡检模式,即以人工的方式方法登记、统计设备信息来进行管理工作的落后状态。由于电网的维护难度高,巡检量大,采用人工巡检模式己不能满足己完全不能满足实际需要。
随着机器人技术的快速发展,将机器人技术与电力应用相结合,基于机器人移动平台携带检测设备代替人工进行设备巡检成为了可能。变电站中的环境复杂,采集的设备图像并不是保持不变的。模板图像和巡检图像不同,致使续算法正确率降低。因此,对采集到的图像和模板图像相似性判断是一项重要工作,研究一种图像相似度计算方法具有重要意义。
1 图像滤波
为了提高图像质量便于后而处理得到更好的结果,需要对图像进行预处理操作。滤波去噪是图像预处理常用的技术手段,其中,中值滤波是一种非线性滤波器,对噪声点有较好的处理效果。中值滤波定义如下:假设数组
为1维数组,将该数组元素按从小到大排列:
式中:y称为数组X的中值。对于二维图像数据,选取一个r1×r2区域的窗口,将窗口依次滑过整幅图像,将窗口中心位置像素用窗口中像素中值代替,得到滤波后的图像。依据实践经验,选取1×3的窗口,可以较好滤除噪声点干扰。因此,结合变电站巡检图像自身特点,本文采用中值滤波对指针图像降噪处理。
数学形态学是进行数字图像处理的重要方法。它是建立在集合代数基础上,用集合论方法定量地描述几何形状和结构的数学方法,它逐渐成为提取和分析图像几何特征的工具。数学形态学是分析几何形状和结构的数学方法,它是由一组形态学的代数运算子组成的,最基本的形态学运算子有:腐蚀(erosion)、膨胀(dilation),开运算(opening)和闭运算(closing)。用这些运算子及其组合来进行图像形状和结构的分析及处理,包括图像分割、特征抽取、边界检测、图像滤波,图像增强和恢复工作。
对于图像X及结构元素S,用XoS表示X对S的开运算,其定义为:
X0S=(XΘS)?S (2)
其中,XΘS表示X对S进行腐蚀,XΘS表示X对S进行膨胀。因此,开运算可看作是对腐蚀图像XΘS用膨胀来进行恢复。开运算的结果为完全删除了不能包含结构元素的对象区域,平滑了对象的轮廓,断开了狭窄的链接,去掉了细小的突出部分。
2 图像几何不变矩
2.1 几何不变矩
矩是描述图像特征的算子,它在模式识别与图像分析领域中有重要的应用。矩在统计学中被用来反映随机变量的分布情况,推广到力学中,它被用作刻画空间物体的质量分布。矩方法即可用于图像分析领域并用作图像特征的提取。迄今为止,常见的矩描述子可以分为以下几种:几何矩、正交矩、复数矩和旋转矩。其中几何矩提出的时间最早且形式简单,对它的研究最为充分。
几何矩主要表征了图像区域的几何特征,由于其具有旋转、平移、尺度等特性的不变特征,所以又称其为不变矩。针对图像的不变特征属性,HuM.K.教授在1962年提出了7个不变矩(简称Hu矩)。在图像处理中,几何不变矩可以作为一个重要的特征来表示物体,可以据此特征来对图像进行分类等操作。
一幅数字图像f(x,y)的二维(p+q)阶矩定义为:
其中,p,q=0,l,2,…,求和在跨越图像的所有空间坐标x,y的值上进行。相应的中心距定义为:
其中,
阶中心矩定义为:
对平移、缩放、镜像和旋转都不敏感的7个二维不变矩的集合可以由上述公式推导出来,即7个Hu不变矩:
2.2 余弦相似度匹配算法
余弦相似度通过测量两个向量内积空间的夹角的余弦值来度量它们之间的相似性。余弦值越接近1,表示两个向量的夹角越接近0度,即表示两个向量越相似。两个向量间的余弦值可以很容易地通过使用欧几里得点积和量级公式
文档评论(0)