Cmptatina Cgnitive Nerscience Lab计算认知神经科学实验室.ppt

Cmptatina Cgnitive Nerscience Lab计算认知神经科学实验室.ppt

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Cmptatina Cgnitive Nerscience Lab计算认知神经科学实验室

Computational Cognitive Neuroscience Lab Today: Model Learning * Computational Cognitive Neuroscience Lab Today: Homework is due Friday, Feb 17 Chapter 4 homework is shorter than the last one! Undergrads omit 4.4, 4.5, 4.7c, 4.7d * Hebbian Learning “Neurons that fire together, wire together” Correlations between sending and receiving activity strengthens the connection between them “Don’t fire together, unwire” Anti-correlation between sending and receiving activity weakens the connection * LTP/D via NMDA receptors NMDA receptors allow calcium to enter the (postsynaptic) cell NMDA are blocked by Mg+ ions, which are cast off when the membrane potential increases Glutamate (excitatory) binds to unblocked NMDA receptor, causes structural change that allows Ca++ to pass through * Calcium and Synapses Calcium initiates multiple chemical pathways, dependent on the level of calcium Low Ca++ long term depression (LTD) High Ca++ long term potentiation (LTP) LTP/D effects: new postsynaptic receptors, incresed dendritic spine size, or increased presynaptc release processes (via retrograde messenger) * Fixing Hebbian learning Hebbian learning results in infinite weights! Oja’s normalization (savg_corr) When to learn? Conditional PCA--learn only when you see something interesting A single unit hogs everything? kWTA and Contrast enhancement -- specialization * Principal Components Analysis (PCA) Principal, as in primary, not principle, as in some idea PCA seeks a linear combination of variables such that maximum variance is extracted from the variables. It then removes this variance and seeks a second linear combination which explains the maximum proportion of the remaining variance, and so on until you run out of variance. * PCA continued This is like linear regression, except you take the whole collection of variables (vector) and correlate it with itself to make a matrix. This is kind of like linear regression, where a whole collection of variables is regressed on itself The

文档评论(0)

beoes + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档