- 1、本文档共38页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
长春理工大学本科毕业设计
PAGE \* MERGEFORMATII
编号
本科生毕业设计
基于机器视觉的表面缺陷检测系统设计
Surface defect detection system design based on machine vision
学 生 姓 名
专 业
电子信息工程
学 号
指 导 教 师
学 院
电子信息工程学院
二〇一三年六月
中文摘要
为了不断提高产品质量和生产效率,金属工件表面缺陷在线自动检测技术在生产过程中显得日益重要。针对金属工件表面的多种缺陷,本文设计了一套基于机器视觉能够实现对金属工件表面缺陷进行实时在线、无损伤的自动检测系统。该系统采用面阵CCD和多通道图像采集卡作为图像采集部分,提高了检测系统的速度并降低了对CCD的性能要求,使系统在现有的条件下比较容易实现实时在线检测;采用自动选取图像分割阈值,根据实际应用的阈值把工件信息从图像中提取出来并扫描工件图像中的信息,实现了系统的自动测量;根据扫描得到的工件信息去除掉工件边缘的光圈,利用自动选取的阈值对金属工件表面的图像进行二值化分割,从而实现各种缺陷的自动提取及识别。
关键词:机器视觉 表面缺陷 CCD 图像处理 缺陷检测
Abstract
In order to continually promote the quality of product and efficiency of production, the on-line automatic inspection technology of surface defect of metal workpiece has become more and more important in the process of production. This paper designs an automatic system based on machine vision, which can inspect surface defect of metal workpiece timely without any damage on it.
Firstly, using CCD and multi-channel image acquisition card to acquire images, the system has accelerated the inspection speed and reduced the requirements of CCD on the performance to do the timely on-line inspection more easily under the current condition; secondly, according to the practical application of threshold, the system has used the segmentation threshold of selecting an image automatically to select the workpiece information from images and scan that information to realize the automatic measurement of the system; finally, the system has removed the aperture on the edge of workpiece in accordance with the workpiece information of scan and conducted the binarization segmentation on the image of the metal workpiece surface by using the automatic selection threshold to automatically select and identify varied defects.
Keywords: machine vision; surface defect; CCD; image processing; defect inspecting
目 录
TOC \o 1-3 \h \z \u HYPERLINK \l _Toc358825371 中文摘要 PAGEREF _Toc358825371 \h I
HYPERLINK \l _Toc358825372 Abstract PAGEREF _Toc35882
文档评论(0)