- 1、本文档共15页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第二章 超声波电机的驱动原理
华侨大学硕士学位论文
PAGE 26
PAGE 27
第二章 超声波电机的驱动原理
本章从压电陶瓷的特性出发,系统地叙述了超声波电机中压电陶瓷的压电效应和逆压电效应,并对其相关的参数进行了系统的讨论。本章还将几何分析法和弹性动力分析法相结合,分析了定子表面质点的椭圆运动的形成,论述了行波型超声波电机的运行机理,为行波型超声波电机的建模、设计制作、实验研究以及驱动电源和控制系统的研究提供必要的理论指导。
2.1 压电效应与压电陶瓷[21-25]
压电陶瓷作为超声波电机能量转换的媒介,它起着为超声波电机提供驱动力的重要作用,如同人体的心脏一样。因此,研究超声波电机就必须对压电材料特性有深入的认识和了解,才能掌握超声波电机的运行机理并能正确地选择和使用压电材料。在研究超声波电机的驱动机理前,首先从压电陶瓷与普通陶瓷的最重要的区别——压电效应开始。
2.1.1 压电效应
压电效应(Piezoelectric Effect)早在1880年,法国的两位科学家——居里(Curie)兄弟,在研究石英晶体的物理性质时,发现了一种特殊的现象,这就是若按某种方位从石英晶体上切割下一片薄晶片,在其表面上敷上电极,当沿着晶片的某些方向施加作用力而使晶片产生变形后,会在两个电极表面上出现等量的正、负电荷。电荷的面密度与施加的作用力的大小成正比;作用力撤销后,电荷也就消失了。这种由于机械力的作用而使晶体表面出现电荷的现象,称为正压电效应,如图2-1所示。后来人们又在其它一些晶体上进行了类似的实验,发现有许多晶体都具有这种现象。这些具有压电效应的晶体统称为压电晶体。发现正压电效应的第二年,也就是1881年,由李普曼在理论上预言,由居里兄弟在实验上证实了另一种物理现象:将压电晶体置于外电场中,由于电场的作用,会使
图2-1 正压电效应示意图 图2-2 逆压电效应示意图
(实线代表变形前的情况,虚线代表变形后的情况)
压电晶体发生形变,而形变的大小与外电场的大小成正比,电场撤除后,形变也
消失。这种由于电场的作用而使压电晶体产生形变的现象,称为逆压电效应,如图2-2所示。实验证明,凡具有正压电效应的晶体,也一定具有逆压电效应,二者一一对应。正压电效应和逆压电效应统称为压电效应。通过压电效应,把力学量(应力T和应变S)与电学量(电场强度E和电位移D或极化强度P)互相联系在一起,这称为机电耦合。
压电陶瓷可以看作是无规取向(图2-3(a))的微晶群。由于这种无规取向和微晶中的畴结构,烧结后的陶瓷体(从宏观尺度来看)是各向同性的,同时也不呈现压电效应。压电陶瓷通过极化处理可以在任意选择的极性方向上产生压电性,这种极化要在略低于居里点的温度下,将陶瓷置于强电场之中进行。金属电极通常被敷在材料的表面,电压加在两电极之间。如果陶瓷体在电场方向伸长。由于微晶的无规取向和晶体内偶极子只能有某些允许的方向这一事实,因此,用电场作用来达到理想的偶极子排列(图2-3(b))是不可能的。但是,在每个微晶内允许有几个方向,因此,用电场有可能获得适当程度的取向排列。在产品冷却并除去极化电场后,偶极子不容易回转到原来位置,这种现象被称为陶瓷材料的剩余极化。这时陶瓷体就变成了永久性的压电体,可将机械能转换为电能,或将电能转换为机械能。因此,极化处理对于这类材料是很必要的,通常这是最后一道工序。
图23 压电材料中(畴的)电偶极子(a)极化前(b)极化后(理想状态)
图2-4说明了压电陶瓷圆柱体的压电效应。为了清楚起见,已将该效应放大。图2-4(a)表示在空载条件下的圆柱体,如果加上一个外力使材料产生压缩或伸张应变时,产生的形变就引起偶极矩变化,结果便在电极之间出现电压。如果机械应力使陶瓷体恢复到原来形态、即极化前的形态(图2-4(b)),量得的电压极性就将与极化电压的极性相同。当机械应力反向时,电极上的电压也将反向(图2-4 (c))。如果将与极化电压极性相反的电压加到电极上,圆柱体就会缩短(图2-4(d))。若外加电压的极性与极化电压的极性相同,圆柱体就将伸长(图2-4(e))。当加上交流电压时,圆柱体就将交替地伸长和缩短(图2-4(f))。
由此可见,压电效应是晶体在机械力的作用下发生形变而引起带电粒子的相对位移(偏离平衡位置),从而使得晶体的总电矩发生变化而造成的。晶体是否具有压电性,是由晶体的结构性这个内因所制约的。具有对称中心的晶体永远不可能具有压电性。
图2
图24 在一个压电陶瓷圆柱体上的压电效应(为清楚起见,只示出一个偶极子)
2.1.2 压电方程
在机电复合作用的情况下,得到同时有一个力学参量T或S和一个电学参量E或D为自变量的压电陶瓷机电耦合效应的方程式,称为压电方程。
压电材料的压电特性是机械量和电学
文档评论(0)