基于平方根容积卡尔曼滤波的RSSI定位参数估计算法.PDF

基于平方根容积卡尔曼滤波的RSSI定位参数估计算法.PDF

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于平方根容积卡尔曼滤波的RSSI定位参数估计算法

26 1 © Vol. 26 No. 1 2014 1 Journal of System Simulation Jan., 2014 RSSI ( 100044) (RSSI) RSSI RSSI (SCKF) SCKF RSSI (RSSI) (SCKF) TP391.9 A 1004-731X (2014) 01-0119-06 Received Signal Strength Indicator Parameter Estimation Algorithm Based on Square-root Cubature Kalman Filter LIU Ying, SU Jun-feng, ZHU Ming-qiang (School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China) Abstract: When wireless signal is used for indoor localization, due to the complex environment of multi-path effects, there is no consistent relationship between the signal strength received by the receiving nodes and the distance from the receiving nodes to the receiving nodes, so there is a larger localization error for the Received Signal Strength Indication RSSI) in the indoor environment. A new received signal strength indicator parameter estimation algorithm based on square-root cubature kalman filter was proposed, this algorithm converted the RSSI localization problem into the parameter vector estimation problem of nonlinear equations, which utilized the Square-root Cubature Kalman filter (SCKF) to estimate the target’s position and the RSSI channel attenuation parameter simultaneously, and uses dynamic channel parameter to correct the node’s position in real – time. The experimental results demonstrate that the RSSI

文档评论(0)

2105194781 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档