人工智能在自动化学科中的应用.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PAGE PAGE 1 人工智能在自动化学科中的应用 社会的进步和人类的长寿要求生产力更加发达,要求人类的经济生活更加智能化,以节省宝贵的人类时间去做其它有益的事情。自动化领域的革新需要人工智能的大力支持,而人工智能在自动化学科方面的优势在这个领域也确实能够得到极大的发挥,促进自动化的发展进步。 自动化是研究与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发以及电子与计算机应用等领域的一门学科。实现机械的自动化,让机械部份脱离人类的直接控制和操作自动实现某些过程是自动化和人工智能研究的交汇点。积极运用人工智能的知识。 人工智能在电力系统运行控制中的应用综述 人工智能技术(AI)广泛应用于求解非线性问题中,在电力系统的控制、管理、运行等领域发挥着重要的作用。阐述了专家系统、人工神经网络、模糊集理论和启发式有哪些信誉好的足球投注网站等人工智能技术在电力系统中各自的应用特点,展望了人工智能技术在电力系统中的发展趋势,指出混合智能是人工智能的重要发展方向之一。 电力系统应用人工智能的起因电力系统运行控制的一个基本目标就是在经济合理的条件下向用户提供高质量的电能。为此,有必要对电力系统进行规划、监视和控制。随着电力系统规模的不断增加,能源管理系统(EMS)运行人员所面临的决策任务也日趋加大,这使得运行人员很难保证电力系 简要介绍了现有的高级人工智能技术的发展概况及其实现方法,全面综述了模糊逻辑(FL)、专家系统(ES)、人工神经网络(ANN)和遗传算法(GA)等典型人工智能技术在电能质量控制中的应用情况及国内外的研究现状,并就值得进一步研究的问题及今后的主要研究方向进行了展望. 近年来,电能质量问题受到人们越来越广泛的关注.对电能质量问题的正确诊断和处理需要高水平的专家知识,并且所需要的专家知识不是仅仅在某一个领域,而是涉及到电气工程中的许多领域,如电子驱动、传感器、旋转电机、变压器、电力电子、电能传输与供应、保护、谐波、信号分 人工智能在智能传感器领域的应用 传感器在自动化信息系统中的重要性不言而喻 ,它的特性的好坏、输出信息的可靠性对整个系统的质量至关重要。各行各业的自动化程度的迅速提高 ,特别是工业生产的自动化程度的提高 ,对传感器的性能提出了更高的要求。传统的传感器技术由于存在着性能不稳定、可靠性差、准确度低等缺点已经不能够满足自动化技术迅猛发展的需要。而人类在人工智能方面取得的进展为人工智能与传感器技术的结合———新型智能传感器的出现提供了契机。主要介绍了人工智能的四个分支 :模糊逻辑、人工神经网络、专家系统、遗传算法在传感器领域的应用。1 模糊逻辑模糊逻辑在传感器领域的应用主要是将模糊逻辑与传感器技术结合构成模糊传感器。由于传统的传感器是数值传感器 ,所以传统的传感器难以对具有较大的非线性或者无法建立精确的数学模型的被测对象进行有效的测量 ,而模糊传感器则能很好的完成这些测量任务。模糊血压传感器是模糊逻辑在传感器系统中的典型应用。测量血压是医生检查心血管病例的一种手段。将医生的知识和经验集成到模糊血压传感器 ,模糊血压传感器就可以充当一位经验丰富的医生的角色。模糊血压传感器通过建立有关不同年龄、性别。 人工智能在故障诊断中的应用 人类社会进入工业化阶段以来,各种复杂的机器设备不断涌现,设备的故障诊断就成了一项重要的研究课题。就诊断方法而言,目前,除了传统的单一参数、单一故障的技术诊断外,多参量、多故障的综合,诊断已经兴起。随着现代科学技术的发展,故障诊断技术和方法也不断推陈出新,正走向智能化阶段。人工智能的发展为故障诊断提供了智能化的诊断方法.故障诊断专家系统不仅在理论上得到了相当的发展.而且已有了成功的应用实例。与此同时,人工神经网络的研究也进入到了故障诊断领域,成为故障诊断的一个必威体育精装版研究热点,并已在许多实际系统中得到了很好的应用。此外.模糊理论、模糊逻辑系统也已经应用到故障诊断领域,并且与人工神经网络和专家系统互相结合,突显出其独特的优势,成为一种很有价值的故障诊断方法。 人工智能在电气传动中运用的进展 人工智能控制器可分为监督、非监督或增强学习型三种。常规的监督学习型神经网络控制器的拓朴结构和学习算法已经定型,这就给这种结构的控制器增加了限制,使得计算时间过长,常规非人工智能学习算法的应用效果不好。采用自适应神经网络和试探法就能克服这些困难,加快学习过程的收敛速度。常规模糊控制器的规则初值和模糊规则表是既定“a-priori”型,这就使得调整困难,当系统得不到“a-priori”(既定)信息时,整个系统就不能正常工作。而应用自适应AI控制器,例如使用自适应模糊神经控制器就能克服这些困难,并且用DSP比较容易实现这些控制器。   常规模糊逻辑控制器的设计经常使用尝试法。需要“a-priori”信息,如

文档评论(0)

a13355589 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档