- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
点云滤波方法.doc
激光雷达点云数据滤波算法综述
滤波对象及目的:通过机载激光雷达快速获取高精度三维地理数据,对它所获取的点云数据的滤波过程就是将LIDAR点云数据中的地面点和非地面点分离的过程。
滤波方法:对数学形态学的滤波算法、基于坡度的滤波法、基于TIN的LIDAR点云过滤算法、基于伪扫描线的滤波算法、基于多分辨率方向预测的LIDAR点云滤波方法。
(一)LIDAR数据形态学滤波算法:
离散点云腐蚀处理。遍历LIDAR点云数据,以任意一点为中心开w×w 大小的窗口,比较窗口内各点的高程,取窗口内最小高程值为腐蚀后的高程
离散点膨胀处理。再次遍历LIDAR点云数据,对经过腐蚀后的数据用同样大小的结构窗口做膨胀。即以任意一点为中心开w×w 大小的窗口,此时,用腐蚀后的高程值代替原始高程值,比较窗口内各点的高程,取窗口内最大高程值为膨胀后的高程
地面点提取。设Zp是p点的原始高程,t为阈值,在每点膨胀操作结束时,对该点是否是地面点作出判断。如果p点膨胀后的高程值和其原始高程值Zp之差的绝对值小于或等于阈值t,则认为p点为地面点,否则为非地面点
该算法有两种滤波方式:一种是按离散点进行滤波,一种是按格网滤波。
(1)按离散点滤波:是对每个激光点进行腐蚀和膨胀操作各一次,结构窗口内数据的选取按距离来量度。
(2)按格网滤波:指将每个格网看成一个“像素”,按照数字图像处理中取邻域的方法来开取结构窗口。腐蚀时,格网的“像素值”即为w×w 邻域所包含格网的最小高程值;膨胀时,格网的“像素值”即为w×w 邻域所包含格网的最大高程值。
优缺点:总体上,数学形态学算法存在的主要问题是坡度阈值的人工选取和细节地形的方块效应。如果阈值设定太大,可能保留一些低矮的地物目标,设定太小,则可能削平地形特征。现在各种阈值的选取一般根据研究者的经验设定,或者根据地形特征设定的,没有考虑全局的特征因素,不具有普适性。解决这些问题的方法是根据地形的起伏大小和高程变化自适应的进行滤波窗口调整。但此方法在大范围地区及地形变化强烈山区的有效性还有待进一步
研究。
实际应用:从应用上,Lindenberger将数字形态学方法引人到机载激光雷达数据滤波中,首先采用水平结构单元对机载激光测高数据进行开运算,过滤剖面式激光扫描数据,然后利用自回归过程改善了开运算结果。
(二)基于坡度变化的滤波算法
滤波基本思想:基于坡度变化的滤波算法是根据地形坡度变化确定最优滤波函数,对于给定的高差值,随着两点间距离的减小,高程值大的激光脚点属于地面点的可能性就越小。
原理:假设A 为原始数据集,DEM 为地面点集,d 是点间距离,那么满足下列滤波函数的点就是DEM 的元素。
(1)
如果对于给定点Pi,找不到临近点Pj使它们满足关系式(2),那么Pi
划分为地面点。
(2)
该滤波方法主要是通过比较两点间的高差值的大小,来判断拒绝还是接收所选择的点。两点间高差的阀值定义为两点间距离的函数Δhmax(d)即所谓的滤波核函数。通常该函数是非递减函数,确定该函数的方法主要有合成函数,假设地形坡度不超过a%,且观测值没有误差,则滤波函数定义为:
(3)
通常观测值是有误差的,所以再增加一个置信区间,并假定允许的具有标准偏差的地面点被拒绝,滤波函数就为:
(4)
在绝大多数情况下,很难用一些参数指定具体的滤波函数,因而需要根据具体的地形训练数据子集推求同地形变化特性相符的滤波核函数。这需要选择一个合适的区域作为训练数据子集用这些数据点推求
优缺点:基于坡度的滤波算法具有计算简单、适应性强等特点,但是需要预先知道地形坡度和确定所开窗口的大小,所选点必须同其它所有点进行比较,以确定该点是否为地面点,也需要在整个数据集中,对每一个点进行坡度计算,这样势必造成计算量的增大,速度变慢。同时,高差阀值的选择是整个算法的关键,这些过滤阀值的设置取决于测区的实际地形状
况,对于平坦地区,丘陵地区和山区,应该根据不同坡度设置不同的过滤参数值。而上述方法仅根据坡度设置统一的阈值,很可能会滤掉一些真实的地形信息,造成分类误差。要克服这些缺点可以把分块处理的思想引入,将原始点云数据按地形统计特性进行分块,然后每一个分块再按照基于坡度变化的滤波算法进行处理得到各块数据地面点集,最后根据重叠区域特征点将各块拼接,得到完整地面点集。这样不同的分块就得到不同的过滤阈值,避免了阈值的单一性,减少了分类误差。Vosselman使用Delaunay三角网组织数据,根据坡度过滤地物点的方法,通过计算该点与邻域内所有点的坡度值,如果最大坡度值在阈值内,则该点分类为地面点。Sithole在Vosselman的基础之上修改了该算法,采用变化的斜率阈值来提取地面点以适应陡坡地形的算法,不同的地区使
您可能关注的文档
- 派车、用车管理规定.doc
- 学校国防教育主要做法及特色.doc
- 学校家校共建活动实施方案.doc
- 学校家校联系工作计划.doc
- 浅析《工人,价格,利润》.doc
- 浅析《红楼梦》中的文学意蕴.doc
- 学校法制教育活动记录.doc
- 学校网络安全管理方案.doc
- 浅析《雷雨》中 周朴园和鲁侍萍的爱情——是否真爱.doc
- 浅析下丘脑的结构和功能.doc
- 四川省德阳市罗江中学2025届高三考前热身化学试卷含解析.doc
- 山东省枣庄现代实验学校2025届高三下学期第五次调研考试化学试题含解析.doc
- 吉林省长春市十一高中等九校教育联盟2025届高三一诊考试生物试卷含解析.doc
- 2025届江苏省盐城市伍佑中学高考仿真模拟化学试卷含解析.doc
- 2025届广西贺州中学高考冲刺押题(最后一卷)生物试卷含解析.doc
- 安徽省池州市贵池区2025届高三第一次模拟考试生物试卷含解析.doc
- 宁夏银川一中2025届高三(最后冲刺)化学试卷含解析.doc
- 广东省广州市增城区四校联考2025届高考压轴卷化学试卷含解析.doc
- 2025届邯郸市第一中学高考生物必刷试卷含解析.doc
- 2025届安徽省安庆市石化第一中学高考仿真卷化学试卷含解析.doc
文档评论(0)