基于改进KNN-SVM的车辆图像光照检测模型-计算机工程与应用.PDF

基于改进KNN-SVM的车辆图像光照检测模型-计算机工程与应用.PDF

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于改进KNN-SVM的车辆图像光照检测模型-计算机工程与应用

Computer Engineering and Applications 计算机工程与应用 2017 ,53(24 ) 207 基于改进KNN-SVM 的车辆图像光照检测模型 用 郝 蓓,杨大利 应 HAO Bei, YANG Dali 与 北京信息科技大学 计算机学院 计算机开放系统实验室,北京 100101 程 Open Computer System Laboratory, College of Computer, Beijing Information Science and Technology University, Beijing g 100101, China 工 r o . j HAO Bei, YANG Dali. Vehicle image illumination detection model based on improved K Nearest Neighbor and Sup- 机 a port Vector Machine. Computer Engineering and Applications, 2017, 53 (24 ):207-212. 算 e c . Abstract :In order to accurately detect the light type of vehicle traffic image, so as to correct different lighting to reduce 计 w its impact on the license plate positioning, a vehicle image lighting detection method based on improved K Nearest Neigh- bor and Support Vector Machine (KNN-SVM )is proposed. Firstly, the HSV spatial brightness feature, the gray histogram w feature and the projection histogram feature are fused as the light feature of the vehicle image, and then the distance calcu- w lation method is improved in traditional KNN-SVM, which is redefined as the distance between each class of samples to the class of support vectors, and the testing and verification is performed on the collection of all-weather different light vehicle image. Experiments show that, the improved KNN-SVM advances the time to threshold acquisition, avoids repeat- ed detection of traditional KNN-SVM for SVM detection and KNN detection in the vicinity of the hyperplan

文档评论(0)

magui + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8140007116000003

1亿VIP精品文档

相关文档