基于显着性检测和稠密轨迹的人体行为识别-计算机工程与应用.PDF

基于显着性检测和稠密轨迹的人体行为识别-计算机工程与应用.PDF

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于显着性检测和稠密轨迹的人体行为识别-计算机工程与应用

Computer Engineering and Applications 计算机工程与应用 2018 ,54(14) 163 基于显著性检测和稠密轨迹的人体行为识别 用 鹿天然,于凤芹,杨慧中,陈 莹 应 LU Tianran, YU Fengqin, YANG Huizhong, CHEN Ying 与 江南大学 物联网工程学院,江苏 无锡 214122 程 School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China g 工 r o LU Tianran, YU Fengqin, YANG Huizhong, et al. Human action recognition based on dense trajectories with . j saliency detection. Computer Engineering and Applications, 2018, 54 (14):163-167. 机 a 算 e Abstract :Human action recognition based on dense trajectories samples the whole image of every frame densely, which c . leads to high feature dimensionality, large computational cost and containing the irrelevant background information. A 计 w human action recognition method is proposed based on dense trajectories with saliency detection. First, a multi-scale static saliency detection is used to get the action subject positions, which then is combined with the results of dynamic saliency w detection to get human action areas. The original algorithm is improved by only extracting dense trajectories in these areas. w To enhance adequacy of feature expression, Fisher vector is used to replace BOW model encoding the features. At last, SVM is used to get the results of human action recognition. The experimental results conducted on KTH dataset and UCF Sports dataset show that the proposed method has improved on the recognition accuracy compared with the original algorithm

文档评论(0)

magui + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8140007116000003

1亿VIP精品文档

相关文档