厦门大学《应用多元统计分析》第05章-聚类分析.pptVIP

厦门大学《应用多元统计分析》第05章-聚类分析.ppt

  1. 1、本文档共96页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
厦门大学《应用多元统计分析》第05章-聚类分析

第一节 引言 “物以类聚,人以群分”。对事物进行分类,是人们认识事物的出发点,也是人们认识世界的一种重要方法。因此,分类学已成为人们认识世界的一门基础科学。 在生物、经济、社会、人口等领域的研究中,存在着大量量化分类研究。例如:在生物学中,为了研究生物的演变,生物学家需要根据各种生物不同的特征对生物进行分类。在经济研究中,为了研究不同地区城镇居民生活中的收入和消费情况,往往需要划分不同的类型去研究。在地质学中,为了研究矿物勘探,需要根据各种矿石的化学和物理性质和所含化学成分把它们归于不同的矿石类。在人口学研究中,需要构造人口生育分类模式、人口死亡分类状况,以此来研究人口的生育和死亡规律。 但历史上这些分类方法多半是人们主要依靠经验作定性分类,致使许多分类带有主观性和任意性,不能很好地揭示客观事物内在的本质差别与联系;特别是对于多因素、多指标的分类问题,定性分类的准确性不好把握。为了克服定性分类存在的不足,人们把数学方法引入分类中,形成了数值分类学。后来随着多元统计分析的发展,从数值分类学中逐渐分离出了聚类分析方法。随着计算机技术的不断发展,利用数学方法研究分类不仅非常必要而且完全可能,因此近年来,聚类分析的理论和应用得到了迅速的发展。 聚类分析就是分析如何对样品(或变量)进行量化分类的问题。通常聚类分析分为Q型聚类和R型聚类。Q型聚类是对样品进行分类处理,R型聚类是对变量进行分类处理。 第二节 相似性的量度 一、样品相似性的度量 在聚类之前,要首先分析样品间的相似性。Q型聚类分析,常用距离来测度样品之间的相似程度。每个样品有p个指标(变量)从不同方面描述其性质,形成一个p维的向量。如果把n个样品看成p维空间中的n个点,则两个样品间相似程度就可用p维空间中的两点距离公式来度量。两点距离公式可以从不同角度进行定义,令dij 表示样品Xi与Xj的距离,存在以下的距离公式: 1.明考夫斯基距离 (5.1) 明考夫斯基距离简称明氏距离,按的取值不同又可分成: 欧氏距离是常用的距离,大家都比较熟悉,但是前面已经提到,在解决多元数据的分析问题时,欧氏距离就显示出了它的不足之处。一是它没有考虑到总体的变异对“距离”远近的影响,显然一个变异程度大的总体可能与更多样品近些,既使它们的欧氏距离不一定最近;另外,欧氏距离受变量的量纲影响,这对多元数据的处理是不利的。为了克服这方面的不足,可用“马氏距离”的概念。 2.马氏距离 设Xi与Xj是来自均值向量为? ,协方差为∑ =(>0)的总体 G中的p维样品,则两个样品间的马氏距离为 (5.5) 马氏距离又称为广义欧氏距离。显然,马氏距离与上述各种距离的主要不同就是它考虑了观测变量之间的相关性。如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵,则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。马氏距离还考虑了观测变量之间的变异性,不再受各指标量纲的影响。将原始数据作线性变换后,马氏距离不变。 3.兰氏距离 (5.6) 它仅适用于一切Xij0的情况,这个距离也可以克服各个指标之间量纲的影响。这是一个自身标准化的量,由于它对大的奇异值不敏感,它特别适合于高度偏倚的数据。虽然这个距离有助于克服明氏距离的第一个缺点,但它也没有考虑指标之间的相关性。 4.距离选择的原则 一般说来,同一批数据采用不同的距离公式,会得到不同的分类结果。产生不同结果的原因,主要是由于不同的距离公式的侧重点和实际意义都有不同。因此我们在进行聚类分析时,应注意距离公式的选择。通常选择距离公式应注意遵循以下的基本原则: (1)要考虑所选择的距离公式在实际应用中有明确的意义。如欧氏距离就有非常明确的空间距离概念。马氏距离有消除量纲影响的作用。 (2)要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。如在进行聚类分析之前已经对变量作了标准化处理,则通常就可采用欧氏距离。 (3)要考虑研究对象的特点和计算量的大小。样品间距离公式的选择是一个比较复杂且带有一定主观性的问题,我们应根据研究对象的特点不同做出具体分折。实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类,然后对聚类分析的结果进行对比分析,以确定最合

文档评论(0)

专注于电脑软件的下载与安装,各种疑难问题的解决,office办公软件的咨询,文档格式转换,音视频下载等等,欢迎各位咨询!

1亿VIP精品文档

相关文档