2018年如何零基础入门数据分析.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2018年如何零基础入门数据分析.doc

go 如何零基础入门数据分析 随着数据分析相关领域变得火爆,最近越来越多的被问到:数据分析如何从头学起?其中很多提问者都是商科背景,之前没有相关经验和基础。 我在读Buisness Analytics硕士之前是商科背景,由于个人兴趣爱好,从大三开始到现在即将硕士毕业,始终没有停下自学的脚步。Coursera和EDX等平台上大概上过20多门网课,Datacamp上100多门课里,刷过70多门。这篇文章是想谈一谈个人的数据分析学习经验,希望对想要入门这个领域的各位有帮助。 1. 基本工具 学习数据分析的第一步,是了解相关工具 Excel excel至是最基础的数据分析工具,至今还是非常有效的,原因是它便于使用,受众范围极广,且分析结果清晰可见。 相信大多数人都有使用excel的基本经验,不需要根据教材去学习了。重点掌握:基本操作的快捷键;函数:计算函数、if类、字符串函数、查找类(vlookup和match),一定要熟悉函数功能的绝对和相对引用; 数据透视表功能等。另外,excel可以导入一些模块来使用,典型的包括数据分析模块,作假设检验常用;规划求解,作线性规划和决策等问题非常有效。利用这些模块可以获得很不错的分析报告,简单且高效。 SQL 数据分析的绝对核心!大部分数据分析工作都是对数据框进行的,在这个过程中,需要不断的根据已有变量生成新变量、过滤掉一些样本还有转换level。SQL的设计就是为了解决这些问题。其他常用的数据操作工具,包括R语言的数据框、Python里的pandas,基本都是借鉴了SQL的思想,一通百通。 SQL入门容易,它的语法极其简单,基本可以说上过一门相关的课或看过一本相关的书就可以了解大概,但融会贯通并能够进行各种逻辑复杂的操作,就需要长时间的锤炼了。 SQL的学习建议,随便找一本书或者网课就好,因为主流的课程基本都是一个思路:先讲SELECT、WHERE、GROUP BY(配合简单的聚合函数)、ORDER BY这类单表操作,之后讲JOIN进行多表连接。除此之外,必会的基本技能还应该包括WINDOW FUNCTION和CASE WHEN等等。学了基本的内容之后,就是找项目多练,不断提升。 R/Python 熟练SQL之后,对数据操作方面的内容就得心应手了。接下来更复杂的问题,如有哪些信誉好的足球投注网站和建模,则需要使用编程语言。 R vs Python 目前最主流的数据分析编程语言就是R和Python,网上遍是关于这两者的争论,有兴趣的可以简单看一下,但不用陷入过度的纠结。我个人的经验来看,熟练两者其中的任何一个都可以胜任数据分析中的大部分工作,不存在某一个语言有明显缺陷的情况。 这里不想大篇幅的比较两者,但是想简单的说一下两者的侧重点: R语言是为了解决统计问题而设计的,因此它有一个很人性化的地方:最大程度的简化语言,从而让分析人员忽略编程内容,直面数据分析。也因为是统计语言,很多基本的统计分析内容在R里都是内置函数,调用十分便捷。此外,R的报告能力很强,大部分模型库在训练模型后都会提供很多细节,也比较容易通过rmd转换成优美的doc/pdf/html。 Python先是一门general的编程语言,之后才是数据分析工具。初学python,语法肯定是不如R容易理解的。但使用到后来,当越来越多的需要自己定义时,Python的优势就显现出来了。另外,Python在数据量大时速度会比较快。 至于先学哪一个,需要结合自己的规划来看:如果最终两个都要学,那我毫不犹豫的建议从R开始;如果两个选一个学的话,我目前倾向于Python,不过如果你确定自己以后只做业务方面的内容,那R可能更好一些。另外,如果有专注的领域的话,那么要结合自己的领域来定,比如搞投资分析的可以看一看R语言的PortfolioAnalytics库,大概就明白,说R语言把编程简化专注结果所言非虚。 R语言学习 当然无论入门哪种语言,学习路径都很重要。R语言的学习建议从基础数据结构开始,了解R中的vector、dataframe和list等结构,对语法有基本的理解。之后建议学习dplyr和ggplot2这两个库,两者分别是数据操纵和可视化库,学过之后可以做一些基本的数据项目了。学习平台首推datacamp,是付费的但绝对物有所值,没有比边学边练更好的学习方式了。此外推荐一本R语言实战(R in Action),可以当作学习手册。 Python学习 包括我在内的很多同学都把Coursera上的Python for everyone当作启蒙教材,这是一门很好的课程,但对于专注数据分析的Python使用者而言,课程没有提供最完美的学习路径。学习Python也应该从数据结构开始,list、dictionary、tuple这些数据结构要了解。之后建议学习numpy、pandas

文档评论(0)

liuxiaoyu92 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档