- 1、本文档共27页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于粒子群优化lswsvm电机断条故障诊断
智能控制 基于粒子群优化LS-WSVM的电机断条故障诊断 1、电机故障诊断研究的目的和意义 电动机是进行电能与机械能转换的旋转机器。 继电保护装置是在电机出现异常之后的保护,并不能提前预知电机故障,而且继电保护装置动作后电机的停止运行也会给生产带来经济损失。 电机故障诊断技术对及时发现并排除电机的故障,保证电机正常运行,提高生产效率,减少维修费用,具有非常重要的意义。因此,研究电机的智能在线监测、故障诊断系统十分重要。 1、实验条件 实验所用的三相异步电动机型号为Y132M-4型,额定功率为7.5kW,额定电压为380V,电压额定频率为50Hz,额定电流为15.4A,额定转速为1440rpm(即额定转差率sN=0.04),三角形接法,完好转子共有32根导条。有完好、断1条、断3条3种定做的转子。负载为8kW的直流发电机,发电机给40个功率为200W的灯泡供电,有空载、半载和满载3种运行状态。 2、特征向量提取 2.1 电机定子电流频谱分析 小波变换是在傅里叶变换的基础上发展起来的。傅里叶变换是用正弦函数来逼近信号,小波变换是用小波函数来逼近信号。 小波变换可以对信号进行局部分析,其窗口函数的面积固定但是形状可以改变。在信号的低频部分,窗口函数在时域较宽,分辨率低,在频域较窄,分辨率高;在信号的高频部分,窗口函数在时域较窄,分辨率高,在频域较宽,分辨率低。这个优点正好符合我们对信号分析的要求,故小波变换被誉为“数学显微镜”。 2.2 小波变换 选择db6小波分别对正常电机、转子断1条满载电机、转子断3条满载电机的10个周期的定子电流信号即1000个数据进行三层分解,求出每个节点信号的能量,得到的特征向量如下表所示: 2.2 小波变换 选择db6小波分别对正常电机、转子断1条满载电机、转子断3条满载电机的10个周期的定子电流信号即1000个数据进行三层分解,求出每个节点信号的能量,得到的特征向量如下表所示: 2.2 小波变换 支持向量机是一种机器学习方法。相对于人工智能方法,支持向量机在模式识别上有许多优势。人工智能方法,例如人工神经网络,都是基于大样本学习理论的,实际上很难得到大量的数据,而且人工智能方法容易出现“欠训练”和“过训练”现象。支持向量机在小样本学习上具有很好的泛化能力,很大程度上解决了模型选择与过学习问题、局部收敛问题、非线性和维数灾难等问题,成为目前研究的热点。在模式识别与分类、函数回归与拟合等领域中得到了广泛的应用。 2.3 最小二乘小波支持向量机 支持向量机是一种机器学习方法。 2.3 最小二乘小波支持向量机 实际应用中训练集往往不是线性可分的 2.3 最小二乘小波支持向量机 引入适当的核函数 支持向量机是一种机器学习方法。 2.3 最小二乘小波支持向量机 最小二乘法基本原理 评价函数p(x)对于给定数据点集 的拟合程度的好坏,常用误差平方和 来表示。这种方法称为最小二乘法(The least square method)。 最小二乘法是一种优化算法,常被用于曲线的拟合。 2.3 最小二乘小波支持向量机 最小二乘支持向量机基本原理 最小二乘支持向量机(Least squares Support Vector Machines,LS-SVM)是将标准支持向量机的不等式约束用等式约束代替,即将式(3.10)中的≥用=代替。且将误差平方和损失函数作为训练集的经验损失,将优化问题简化成求方程组的问题,大大提高了求解的速度。 2.3 最小二乘小波支持向量机 最小二乘小波支持向量机(Least Squares Wavelet Support Vector Machines, LS-WSVM)与最小二乘支持向量机的基本原理相同,只是核函数用小波核函数代替。相对于最小二乘支持向量机,最小二乘小波支持向量机将小波分析和支持向量机的优势互补,具有强大的泛化能力和抗噪能力。下面将分别利用最小二乘小波支持向量机和最小二乘支持向量机(RBF核)来解决双螺旋分类问题。 2.3 最小二乘小波支持向量机 双螺旋的样本 2.3 最小二乘小波支持向量机 2.3 最小二乘小波支持向量机 2.3 最小二乘小波支持向量机 2.3 最小二乘小波支持向量机 2.3 最小二乘小波支持向量机 3、粒子群优化的LS-WSVM 3.1 标准的粒子群优化算法 粒子群优化算法(PSO)是由James Kennedy和Russell Eberhart博
文档评论(0)